• 제목/요약/키워드: two flexible manipulators

검색결과 23건 처리시간 0.024초

3차원 양팔 유연 매니퓨레이터의 협조제어 (실험에 의한 검증) (Cooperative Control of Two Spatial Flexible Manipulators -Verification by Experiments-)

  • 김진수
    • 한국정밀공학회지
    • /
    • 제17권9호
    • /
    • pp.87-94
    • /
    • 2000
  • In this paper we discuss the control scheme on cooperative control of two flexible manipulators working in 3D space. We propose a control scheme which consists of hybrid position/force control and vibration suppression control. Hybrid position/force control is extended from the scheme for two cooperating rigid manipulators to that for flexible ones. in addition to the control vibration suppression control based upon a lumped-mass-spring model of the flexible manipulators is applied. To illustrate the validity of the proposed control scheme we show experimental results. in the experiment a rigid object is handled by two cooperating flexible manipulators in 3D space.

  • PDF

Hybrid position/force control of flexible manipulators

  • Kim, Jin-Soo;Suzuki, Kuniaki;Konno, Atsushi;Uchiyama, Masaru
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1995년도 Proceedings of the Korea Automation Control Conference, 10th (KACC); Seoul, Korea; 23-25 Oct. 1995
    • /
    • pp.408-411
    • /
    • 1995
  • In this paper, we discuss the force control of flexible manipulators. Since the force control of flexible manipulators with planar one or two links using the distributed-parameter modeling has been the subject of a considerable number of publications until now, real time computations of the force control schemes are possible. But, application of those control schemes to multi-link spatial manipulators is fairly complicated. In this paper, we apply a concise hybrid position/force control scheme for a flexible manipulators. We use a lumped-parameter modeling for the flexible manipulators. The Hamilton's principle is applied to derive the equations of motion for the system and then, state-space model is obtained by the Lagrange's method. Finally, comparison of simulation results with experimental results is given to show the performance of our method.

  • PDF

구속받는 3차원 유연 매니퓨레이터의 진동억제 제어 (Vibration Suppression Control of Constrained Spatial Flexible Manipulators)

  • 김진수;우찌야마마사루
    • 한국정밀공학회지
    • /
    • 제17권7호
    • /
    • pp.189-195
    • /
    • 2000
  • For free motions, vibration suppression of flexible manipulators has been one of the hottest research topics. However, for constrained motions, a little effort has been devoted for vibration suppression control. Using the dependency of elastic deflections of links on contact force under static conditions, vibrations for constrained planar two-link flexible manipulators have been suppressed successfully by controlling the contact force. However, for constrained spatial multi-link flexible manipulators, the vibrations cannot be suppressed by only controlling the contact force. So, the aim of this paper is to clarify the vibration mechanism of a constrained, multi-DOF, flexible manipulator and to devise the suppression method. We apply a concise hybrid position/force control scheme to control a flexible manipulator modeled by lumped-parameter modeling method. Finally, a comparison between simulation and experimental results is presented to show the performance of our method.

  • PDF

양팔 협조 유연 매니퓰레이터의 진동억제 제어 (Vibration Suppression Control of Two Cooperating Flexible Manipulators)

  • 김진수
    • 한국생산제조학회지
    • /
    • 제19권5호
    • /
    • pp.645-652
    • /
    • 2010
  • For free motions, vibration suppression of single flexible manipulators has been one of the hottest research topics. However, for cooperative motions of multiple flexible manipulators, a little effort has been devoted for the vibration suppression control. So, the aim of this paper is to develop a hybrid force/position control and vibration suppression control scheme for multiple cooperation flexible manipulators handling a rigid object. In order to clarify the discussion, the motions of dual-arm experimental flexible manipulator are considered. Using the developed model, we control a robotic system with hybrid position/force control scheme. Finally, Experiments are performed, and a comparison of experimental results is given to clarify the validity of our control scheme.

Deformation analysis of a 3-DOF parallel manipulator with one or two additional branches

  • Chen, Xiaolei;Wu, Jun;Yu, Guang;Wang, Liping
    • Advances in robotics research
    • /
    • 제1권2호
    • /
    • pp.141-154
    • /
    • 2014
  • Redundant parallel manipulators have some advantages over the nonredundant parallel manipulators. It is important to determine how many additional branches should be introduced. This paper studies whether one or two additional branches should be added to a 3-DOF parallel manipulator by comparing the flexible deformation of a 3-DOF parallel manipulator with one additional branch and that with two additional branches. The kinematic and dynamic models of the redundant parallel manipulator are derived and the flexible deformation is investigated. The flexible deformation of the manipulators with one additional branch and two branches is simulated and compared. This paper is helpful for designers to design a redundantly actuated parallel manipulator.

Dynamic Modeling of Two Cooperating Flexible Manipulators

  • Kim, Jin-Soo;Uchiyama, Masaru
    • Journal of Mechanical Science and Technology
    • /
    • 제14권2호
    • /
    • pp.188-196
    • /
    • 2000
  • In this paper, our aim is to develop a model for two cooperating flexible manipulators handling a rigid object by using lumped parameters. This model is in turn analyzed on MATLAB. In order to validate the model, a precise simulation model is developed using $ADAMS^{TM}$ (Automatic Dynamic Analysis of Mechanical System). Moreover, to clarify the discussion, the motions of a dual-arm experimental flexible manipulator are considered. Using the developed model, we control a robotic system with a symmetric hybrid position/force control scheme. Finally, experiments and simulations are performed, and a comparison of simulation results with experimental results is given to a rerify the validity of our model.

  • PDF

2개의 유연한 링크를 갖는 매니퓰레이터의 설계 및 제어 (Design and control of two-link flexible manipulators)

  • 정주노;정완균;염영일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.383-386
    • /
    • 1996
  • In this paper, we propose a design method and control law for plannar type two-link flexible manipulator. In designing flexible links, we use Rayleigh's principle. To control flexible manipulator, input distribution controller is used, which is primarily on the basis of nonlinear variable structure control(VSC). The simulation results are also shown.

  • PDF

로봇 매니퓰레이터의 새로운 견실제어기 설계 (New Robust Control Fesigns of Robot Manipulators)

  • 한명철
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국내학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.666-671
    • /
    • 1993
  • A new robust control law is proposed for uncertain rigid robots and two composite robust control laws for flexible-joint manipulators which contain uncertainties. The uncertainty, is nonlinear and (possibly fast) time-varying. Therefore, the uncertain factors such as imperfect modeling, function, payload change, and external disturbances are all addressed. Based only on the possible bound of the uncertainty, a robust controller is constructed for the rigid counterpart of the flexible-joint robot Some feedback control terms are then added to the robust control law to stabilize the elastic vibrations at the joints. To show that the proposed composite robust control laws are indeed applicable to flexible-joint robots, a singular perturbation approach and the stability study based on Lyapunov function are proposed.

  • PDF

Lumped-parameter modeling of flexible manipulator dynamics

  • Kim, Jin-Soo;Konno, Atsushi;Uchiyama, Masaru;Usui, Kazuaki;Yoshimura, Kazuki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1994년도 Proceedings of the Korea Automatic Control Conference, 9th (KACC) ; Taejeon, Korea; 17-20 Oct. 1994
    • /
    • pp.117-122
    • /
    • 1994
  • In this paper, we discuss the modeling of flexible manipulators. In the modeling of flexible manipulators, there are two approaches: one is based on the distributed-parameter modeling and the other on the lumped-parameter modeling. The former has been applied to control and analysis of simple manipulator requiring precision, while the latter has been applied to multi-link spatial manipulator, because of the model's simplicity. We have already proposed the lumped-parameter modeling method for simple manipulator, and investigate that model of how much degree of precision we can get. The experiments and simulations are performed, comparing these results, the approximate performance of our modeling method is discussed.

  • PDF

Modeling and control of a flexible continuum module actuated by embedded shape memory alloys

  • Hadi, Alireza;Akbari, Hossein
    • Smart Structures and Systems
    • /
    • 제18권4호
    • /
    • pp.663-682
    • /
    • 2016
  • Continuum manipulators as a kind of mechanical arms are useful tools in special robotic applications. In medical applications, like colonoscopy, a maneuverable thin and flexible manipulator is required. This research is focused on developing a basic module for such an application using shape memory alloys (SMA). In the structure of the module three wires of SMA are uniformly distributed and attached to the circumference of a flexible tube. By activating wires, individually or together, different rotation regimes are provided. SMA model is used based on Brinson work. The SMA model is combined to model of flexible tube to provide a composite model of the module. Simulating the model in Matlab provided a platform to be used to develop controller. Complex and nonlinear behavior of SMA make the control problem hard especially when a few SMA actuators are active simultaneously. In this paper, position control of the two degree of freedom module is under focus. An experimental control strategy is developed to regulate a desired position in the module. The simulation results present a reasonable performance of the controller. Moreover, the results are verified through experiments and show that the continuum module of this paper would be used in real modular manipulators.