• 제목/요약/키워드: two dimensional elastostatics

검색결과 4건 처리시간 0.013초

The use of discontinuous first and second-order mixed boundary elements for 2D elastostatics

  • Severcan, M.H.;Tanrikulu, A.K.;Tanrikulu, A.H.;Deneme, I.O.
    • Structural Engineering and Mechanics
    • /
    • 제34권6호
    • /
    • pp.703-718
    • /
    • 2010
  • In classical higher-order discontinuous boundary element formulation for two-dimensional elastostatics, interpolation functions for different boundary variables (i.e., boundary displacements and tractions) are assumed to be the same. However, there is a derivational relationship between these variables. This paper presents a boundary element formulation, called Mixed Boundary Element Formulation, for two dimensional elastostatic problems in which above mentioned relationship is taking into account. The formulations are performed by using discontinuous first and second-order mixed boundary elements. Based on the formulations presented in this study, two computer softwares are developed and verified through some example problems. The results show that the present formulation is credible.

Exact integration for the hypersingular boundary integral equation of two-dimensional elastostatics

  • Zhang, Xiaosong;Zhang, Xiaoxian
    • Structural Engineering and Mechanics
    • /
    • 제30권3호
    • /
    • pp.279-296
    • /
    • 2008
  • This paper presents an exact integration for the hypersingular boundary integral equation of two-dimensional elastostatics. The boundary is discretized by straight segments and the physical variables are approximated by discontinuous quadratic elements. The integral for the hypersingular boundary integral equation analysis is given in a closed form. It is proven that using the exact integration for discontinuous boundary element, the singular integral in the Cauchy Principal Value and the hypersingular integral in the Hadamard Finite Part can be obtained straightforward without special treatment. Two numerical examples are implemented to verify the correctness of the derived exact integration.

Analysis of transversely isotropic hollow toroids using the semi-analytical DQM

  • Jiang, W.;Redekop, D.
    • Structural Engineering and Mechanics
    • /
    • 제13권1호
    • /
    • pp.103-116
    • /
    • 2002
  • A solution based on the linear three-dimensional theory of elasticity is developed for vibration and elastostatic problems of hollow toroids. The theory is developed for transversely isotropic toroids of arbitrary thickness, and has the potential to validate some vehicle and aircraft tire models in the linear range. In the semi-analytical method that is adopted Fourier series are written in the circumferential direction, forming a set of two-dimensional problems. These problems are solved using the differential quadrature method. A commercial finite element program is used to determine alternative solutions. For validation both problems of vibration and elastostatics are considered. Finally results are determined for local surface loading problems, and conclusions are drawn.

A boundary radial point interpolation method (BRPIM) for 2-D structural analyses

  • Gu, Y.T.;Liu, G.R.
    • Structural Engineering and Mechanics
    • /
    • 제15권5호
    • /
    • pp.535-550
    • /
    • 2003
  • In this paper, a boundary-type meshfree method, the boundary radial point interpolation method (BRPIM), is presented for solving boundary value problems of two-dimensional solid mechanics. In the BRPIM, the boundary of a problem domain is represented by a set of properly scattered nodes. A technique is proposed to construct shape functions using radial functions as basis functions. The shape functions so formulated are proven to possess both delta function property and partitions of unity property. Boundary conditions can be easily implemented as in the conventional Boundary Element Method (BEM). The Boundary Integral Equation (BIE) for 2-D elastostatics is discretized using the radial basis point interpolation. Some important parameters on the performance of the BRPIM are investigated thoroughly. Validity and efficiency of the present BRPIM are demonstrated through a number of numerical examples.