• Title/Summary/Keyword: two dimensional behaviors

Search Result 199, Processing Time 0.034 seconds

Investigation into Variations of Welding Residual Stresses and Redistribution Behaviors for Different Repair Welding Widths (보수용접부 폭에 따른 용접잔류응력의 변화 및 재분배 거동 평가)

  • Park, Chi-Yong;Lee, Hwee-Sueng;Huh, Nam-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.2
    • /
    • pp.177-184
    • /
    • 2014
  • In this study, we investigated the variations in welding residual stresses in dissimilar metal butt weld due to width of repair welding and re-distribution behaviors resulting from similar metal welding (SMW) and mechanical loading. To this end, detailed two-dimensional axi-symmetric finite element (FE) analyses were performed considering five different repair welding widths. Based on the FE results, we first evaluated the welding residual stress distributions in repair welding. We then investigated the re-distribution behaviors of the residual stresses due to SMW and mechanical loads. It is revealed that large tensile welding residual stresses take place in the inner surface and that its distribution is affected, provided repair welding width is larger than certain value. The welding residual stresses resulting from repair welding are remarkably reduced due to SMW and mechanical loading, regardless of the width of the repair welding.

Probabilistic Modeling of Fiber Length Segments within a Bounded Area of Two-Dimensional Fiber Webs

  • Chun, Heui-Ju
    • Communications for Statistical Applications and Methods
    • /
    • v.18 no.3
    • /
    • pp.301-317
    • /
    • 2011
  • Statistical and probabilistic behaviors of fibers forming fiber webs of all kinds are of great significance in the determination of the uniformity and physical properties of the webs commonly found in many industrial products such as filters, membranes and non-woven fabrics. However, in studying the spatial geometry of the webs the observations must be theoretically as well as experimentally confined within a specified unit area. This paper provides a general theory and framework for computer simulation for quantifying the fiber segments bounded by the unit area in consideration of the "edge effects" resulting from the truncated length segments within the boundary. The probability density function and the first and second moments of the length segments found within the counting region were derived by properly defining the seeding region and counting region.

A multivariate latent class profile analysis for longitudinal data with a latent group variable

  • Lee, Jung Wun;Chung, Hwan
    • Communications for Statistical Applications and Methods
    • /
    • v.27 no.1
    • /
    • pp.15-35
    • /
    • 2020
  • In research on behavioral studies, significant attention has been paid to the stage-sequential process for multiple latent class variables. We now explore the stage-sequential process of multiple latent class variables using the multivariate latent class profile analysis (MLCPA). A latent profile variable, representing the stage-sequential process in MLCPA, is formed by a set of repeatedly measured categorical response variables. This paper proposes the extended MLCPA in order to explain an association between the latent profile variable and the latent group variable as a form of a two-dimensional contingency table. We applied the extended MLCPA to the National Longitudinal Survey on Youth 1997 (NLSY97) data to investigate the association between of developmental progression of depression and substance use behaviors among adolescents who experienced Authoritarian parental styles in their youth.

Estimation of Hurst Parameter in Longitudinal Data with Long Memory

  • Kim, Yoon Tae;Park, Hyun Suk
    • Communications for Statistical Applications and Methods
    • /
    • v.22 no.3
    • /
    • pp.295-304
    • /
    • 2015
  • This paper considers the problem of estimation of the Hurst parameter H ${\in}$ (1/2, 1) from longitudinal data with the error term of a fractional Brownian motion with Hurst parameter H that gives the amount of the long memory of its increment. We provide a new estimator of Hurst parameter H using a two scale sampling method based on $A{\ddot{i}}t$-Sahalia and Jacod (2009). Asymptotic behaviors (consistent and central limit theorem) of the proposed estimator will be investigated. For the proof of a central limit theorem, we use recent results on necessary and sufficient conditions for multi-dimensional vectors of multiple stochastic integrals to converges in distribution to multivariate normal distribution studied by Nourdin et al. (2010), Nualart and Ortiz-Latorre (2008), and Peccati and Tudor (2005).

CHARACTERISTICS OF SMOKE CONCENTRATION PROFILES WITH UNDERGROUND UTILITY TUNNEL FIRE

  • Kim Hong Sik;Hwang In Ju;Kim Youn-Jea
    • Journal of computational fluids engineering
    • /
    • v.10 no.1
    • /
    • pp.94-98
    • /
    • 2005
  • Accurate prediction of the fire-induced air velocity, temperature and smoke flow in underground utility tunnel becomes more important for the optimization of design and placement of heat and smoke detectors. In order to improve the safety of underground utility tunnel systems, the behaviors of fire-induced smoke flow and temperature distributions are investigated. Especially, two different cross-sectional shapes of tunnel, such as rectangular and circular types are modeled. Also, fire source is modeled as a volumetric heat source. Three-dimensional thermal-flow characteristics in an underground tunnel are solved by means of FVM using SIMPLE algorithm. The effects of shape geometry on the fire-induced flow characteristics are graphically depicted. It is desirable that heat and smoke detectors are installed on the cables and the top of the wall.

Experimental Observation of Double Composite Box Girders subjected to Concrete Creep and Shrinkage (이중합성 박스 거더의 재령종속적 거동실험 및 해석)

  • 강병수;김정현;곽동석;홍인택;이용학
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.169-172
    • /
    • 2003
  • Time dependent deflections of double composite box girders are investigated based on the on going laboratory experiments scheduled for 3months long. Two of 2-span double composite box girders with 2.5m each span length are cast and time dependent behaviors are measured using 30 strain gages and 2 LVDTs after 5 days' curing. The measured experimental results are compared with the numerical predictions performed based on the one dimensional finite element method adopting beam element. The FEM formulation adopts the time dependent concrete constitutive model which is derived in an incremental format by expanding the total form of stress-strain relation by the first order Taylor series with respect to the reference time. A good agreement between the measured and predicted results are observed and the effects of the bottom concrete placed at the negative moment region of the bridge girder are discussed.

  • PDF

Development of finite element model using incremental endochronic theory for temperature sensitive material

  • Kerh, Tienfuan;Lin, Y.C.
    • Structural Engineering and Mechanics
    • /
    • v.16 no.2
    • /
    • pp.115-126
    • /
    • 2003
  • A novel finite element model based on the incremental endochronic theory with the effect of temperature was developed in this study to explore the deformed behaviors of a flexible pavement material. Three mesh systems and two loading steps were used in the calculation process for a specimen of three-dimensional circular cylinder. Computational results in the case of an uni-axial compression test for temperatures at $20^{\circ}C$ and at $40^{\circ}C$ were compared with available experimental measurements to verify the ability of developing numerical scheme. The isotropic response and the deviatoric response due to the thermal effect were presented from deformations in different profiles and displacement plots for the entire specimen. The characteristics of changing asphalt concrete material under a specified loading condition might be seen clearly from the numerical results, and might provide an useful information in the field of road engineering.

Investigation of fresh concrete behavior under vibration using mass-spring model

  • Aktas, Gultekin
    • Structural Engineering and Mechanics
    • /
    • v.57 no.3
    • /
    • pp.425-439
    • /
    • 2016
  • This paper deals with the behavior of fresh concrete that is under vibration using mass-spring model (MSM). To this end, behaviors of two different full scale precast concrete molds were investigated experimentally and theoretically. Experiments were performed under vibration with the use of a computer-based data acquisition system. Transducers were used to measure time-dependent lateral displacements at some points on mold while mold is empty and full of fresh concrete. Analytical modeling of molds used in experiments were prepared by three dimensional finite element method (3D FEM) using software. Modeling of full mold, using MSM, was made to solve the problem of dynamic interaction between fresh concrete and mold. Numerical displacement histories obtained from time history analysis were compared with experimental results. The comparisons show that the measured and computed results are compatible.

Nonlinear Analysis of RC Structures Using Volume Control Method (체적 제어법을 이용한 철근 콘크리트 구조물의 비선형 해석)

  • Song Ha-Won;Nam Sang-Hyeok;Lee June-Hee;Lim Sang-Mook
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.891-897
    • /
    • 2006
  • The volume control method which utilize a pressure node added into a finite shell element can overcome the drawbacks of conventional load control method and displacement control method. In this study, an improved volume control method is introduced for effective analysis of path-dependant behaviors of RC structures subjected to cyclic loading. RC shell structures including RC hollow columns are anlayized by discretizing the structures with layered shell elements and by applying in-plane two dimensional constitutive equations for concrete layers and reinforcement layers of the shell elements. The so-called path dependant volume control method is verified by comparing analysis results with other data including experimental results.

  • PDF

Duality of Photonic Crystal Radiative Structures and Antenna Arrays

  • Bozorgi, Mahdieh;Granpayeh, Nosrat
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.4
    • /
    • pp.438-443
    • /
    • 2010
  • In this paper, behaviors of photonic crystal (PC) radiative structures and antenna arrays have been compared for two types of uniform and binomial excitations. Appropriate duality has been shown between them. These results can be generalized to other types of excitation and arrangement of photonic crystal radiative arrays such as linear, planar and circular arrays of three dimensional (3D) photonic crystal termination resonators. Using these results in designing photonic circuits has some advantages for shaping a particular radiative beam at the photonic crystal exit, for instance reducing the divergence angle of the main lobe in order to enhance the directivity, for better coupling, or for splitting the emitted beam, for dividing the output beam to the next devices in photonic integrated circuits (PIC). For analysis and simulation of the photonic crystal structures, the finite difference time domain (FDTD) method has been employed.