• Title/Summary/Keyword: two dimensional behaviors

Search Result 199, Processing Time 0.026 seconds

Shear Strength and One-dimensional Compression Characteristics of Granitic Gneiss Rockfill Dam Material (화강편마암 댐 축조재료의 전단강도 및 일차원 압축특성)

  • Kim Bum-Joo;Kim Yong-Seong;Shin Dong-Hoon
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.7
    • /
    • pp.31-42
    • /
    • 2005
  • In this study, a rockfill-dam material was investigated on its shear strength and compressibility by performing large-scaled triaxial and oedometer tests. The rockfill material was compacted at two different compaction levels and sheared in triaxial compression at three different confining stresses. Also, rockfill samples were prepared to have three different grain size distributions but the same dry density. Each sample with a given grain size distribution was then compressed one-dimensionally in a large-scaled oedometer cell with and without soaking. The rockfill samples exhibited slightly different shear behaviors with the varying compaction and confining stress levels. The increase in the compaction level changed the behavior from contractive to dilative. Dilation decreased gradually with increasing confining stress, resulting in reduction in the peak shear strength. The large-scaled oedometer test results showed that particle breakages increased with increasing average particle sizes of the samples. Comparing the samples with different gradations, a relatively well-graded sample exhibited lower compressibility. For saturated samples, slightly higher deformations were observed, compared to dry samples. The values of tangent constrained modulis for the dry samples were larger by about 10 to 20$\%$, on the average, than those for the saturated samples.

Visual Representation of Temporal Properties in Formal Specification and Analysis using a Spatial Process Algebra (공간 프로세스 대수를 이용한 정형 명세와 분석에서의 시간속성의 시각화)

  • On, Jin-Ho;Choi, Jung-Rhan;Lee, Moon-Kun
    • The KIPS Transactions:PartD
    • /
    • v.16D no.3
    • /
    • pp.339-352
    • /
    • 2009
  • There are a number of formal methods for distributed real-time systems in ubiquitous computing to analyze and verify the behavioral, temporal and the spatial properties of the systems. However most of the methods reveal structural and fundamental limitations of complexity due to mixture of spatial and behavioral representations. Further temporal specification makes the complexity more complicate. In order to overcome the limitations, this paper presents a new formal method, called Timed Calculus of Abstract Real-Time Distribution, Mobility and Interaction(t-CARDMI). t-CARDMI separates spatial representation from behavioral representation to simplify the complexity. Further temporal specification is permitted only in the behavioral representation to make the complexity less complicate. The distinctive features of the temporal properties in t-CARDMI include waiting time, execution time, deadline, timeout action, periodic action, etc. both in movement and interaction behaviors. For analysis and verification of spatial and temporal properties of the systems in specification, t-CARDMI presents Timed Action Graph (TAG), where the spatial and temporal properties are visually represented in a two-dimensional diagram with the pictorial distribution of movements and interactions. t-CARDMI can be considered to be one of the most innovative formal methods in distributed real-time systems in ubiquitous computing to specify, analyze and verify the spatial, behavioral and the temporal properties of the systems very efficiently and effectively. The paper presents the formal syntax and semantics of t-CARDMI with a tool, called SAVE, for a ubiquitous healthcare application.

Numerical Experiment of Driftwood Generation and Deposition Patterns by Tsunami (쓰나미에 의한 유목의 생성과 퇴적패턴의 수치모의실험)

  • Kang, Tae Un;Jang, Chang-Lae;Lee, Nam Joo;Lee, Won Ho
    • Ecology and Resilient Infrastructure
    • /
    • v.8 no.4
    • /
    • pp.165-178
    • /
    • 2021
  • We studied driftwood behaviors including generation and deposition in a tsunami using a numerical simulation. We used an integrated two-dimensional numerical model, which included a driftwood dynamics model. The study area was Sendai, Japan. Observation data collected by Inagaki et al. (2012) were used to verify the simulation results by comparing them with driftwood deposition patterns. A simplified model was developed to consider the threshold of driftwood generation by the drag force of water flows. To consider the volume of driftwood generated, we estimated the total wood number in the study area using Google Earth. Therefore, we simulated more than 13,000 pieces of driftwood that were generated and transported inland from approximately 300,000 trees that were growing in the forest. The final distribution of the driftwood was similar to the observation data. The reproducibility of the generation and deposition patterns of driftwood showed good agreement in terms of longitudinal deposition pattern. In the future, a sensitivity analysis on driftwood parameters, such as the size of the wood, boundary conditions, and grid size, will be implemented to predict the travel patterns of driftwood. Such modeling will be a useful methodology for disaster prediction based on water flow and driftwood.

3D Printing-Based Ultrafast Mixing and Injecting Systems for Time-Resolved Serial Femtosecond Crystallography (시간 분해 직렬 펨토초 결정학을 위한 3차원 프린팅 기반의 초고속 믹싱 및 인젝팅 시스템)

  • Ji, Inseo;Kang, Jeon-Woong;Kim, Taeyung;Kang, Min Seo;Kwon, Sun Beom;Hong, Jiwoo
    • Korean Chemical Engineering Research
    • /
    • v.60 no.2
    • /
    • pp.300-307
    • /
    • 2022
  • Time-resolved serial femtosecond crystallography (TR-SFX) is a powerful technique for determining temporal variations in the structural properties of biomacromolecules on ultra-short time scales without causing structure damage by employing femtosecond X-ray laser pulses generated by an X-ray free electron laser (XFEL). The mixing rate of reactants and biomolecule samples, as well as the hit rate between crystal samples and x-ray pulses, are critical factors determining TR-SFX performance, such as accurate image acquisition and efficient sample consumption. We here develop two distinct sample delivery systems that enable ultra-fast mixing and on-demand droplet injecting via pneumatic application with a square pulse signal. The first strategy relies on inertial mixing, which is caused by the high-speed collision and subsequent coalescence of droplets ejected through a double nozzle, while the second relies on on-demand pneumatic jetting embedded with a 3D-printed micromixer. First, the colliding behaviors of the droplets ejected through the double nozzle, as well as the inertial mixing within the coalesced droplets, are investigated experimentally and numerically. The mixing performance of the pneumatic jetting system with an integrated micromixer is then evaluated by using similar approaches. The sample delivery system devised in this work is very valuable for three-dimensional biomolecular structure analysis, which is critical for elucidating the mechanisms by which certain proteins cause disease, as well as searching for antibody drugs and new drug candidates.

A Practical Analysis Method for the Design of Piled Raft Foundations (말뚝지지 전면기초의 설계를 위한 실용적 해석방법에 관한 연구)

  • Lee, Seung-Hoon;Park, Young-Ho;Song, Myung-Jun
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.12
    • /
    • pp.83-94
    • /
    • 2007
  • Piled raft foundations have been highlighted as an economical design concept of pile foundations in recent years. However, piled raft foundations have not been widely used in Korea due to the difficulty in estimating the complex interaction effects among rafts, piles and soils. The authors developed an effective numerical program to analyze the behavior of piled raft foundations for practical design purposes and presented it briefly in this paper. The developed numerical program simulates the raft as a flexible plate consisting of finite elements with eight nodes and the raft is supported by a series of elastic springs representing subsoils and piles. This study imported another model to simulate pile groups considering non-linear behavior and interaction effects. The apparent stiffnesses of the soils and piles were estimated by iterative calculations to satisfy the compatibility between those two components and the behavior of piled raft foundations can be predicted using these stiffnesses. For the verification of the program, the analysis results about some example problems were compared with those of rigorous three dimensional finite element analysis and other approximate analysis methods. It was found that the program can analyze non-linear behaviors and interaction effects efficiently in multi-layered soils and has sufficient capabilities for application to practical analysis and design of piled raft foundations.

Numerical Modeling of Thermoshearing in Critically Stressed Rough Rock Fracture: DECOVALEX-2023 Task G (임계응력 하 거친 암석 균열의 Thermoshearing 수치모델링: 국제공동연구 DECOVALEX-2023 Task G)

  • Jung-Wook Park;Chan-Hee Park;Li Zhuang;Jeoung Seok Yoon;Changlun Sun;Changsoo Lee
    • Tunnel and Underground Space
    • /
    • v.33 no.3
    • /
    • pp.189-207
    • /
    • 2023
  • In the present study, the thermoshearing experiment on a rough rock fracture were modeled using a three-dimensional grain-based distinct element model (GBDEM). The experiment was conducted by the Korea Institute of Construction Technology to investigate the progressive shear failure of fracture under the influence of thermal stress in a critical stress state. The numerical model employs an assembly of multiple polyhedral grains and their interfaces to represent the rock sample, and calculates the coupled thermo-mechanical behavior of the grains (blocks) and the interfaces (contacts) using 3DEC, a DEM code. The primary focus was on simulating the temperature evolution, generation of thermal stress, and shear and normal displacements of the fracture. Two fracture models, namely the mated fracture model and the unmated fracture model, were constructed based on the degree of surface matedness, and their respective behaviors were compared and analyzed. By leveraging the advantage of the DEM, the contact area between the fracture surfaces was continuously monitored during the simulation, enabling an examination of its influence on shear behavior. The numerical results demonstrated distinct differences depending on the degree of the surface matedness at the initial stage. In the mated fracture model, where the surfaces were in almost full contact, the characteristic stages of peak stress and residual stress commonly observed in shear behavior of natural rock joints were reasonably replicated, despite exhibiting discrepancies with the experimental results. The analysis of contact area variation over time confirmed that our numerical model effectively simulated the abrupt normal dilation and shear slip, stress softening phenomenon, and transition to the residual state that occur during the peak stress stage. The unmated fracture model, which closely resembled the experimental specimen, showed qualitative agreement with the experimental observations, including heat transfer characteristics, the progressive shear failure process induced by heating, and the increase in thermal stress. However, there were some mismatches between the numerical and experimental results regarding the onset of fracture slip and the magnitudes of fracture stress and displacement. This research was conducted as part of DECOVALEX-2023 Task G, and we expect the numerical model to be enhanced through continued collaboration with other research teams and validated in further studies.

Propagation Analysis of Dam Break Wave using Approximate Riemann solver (Riemann 해법을 이용한 댐 붕괴파의 전파 해석)

  • Kim, Byung Hyun;Han, Kun Yeon;Ahn, Ki Hong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5B
    • /
    • pp.429-439
    • /
    • 2009
  • When Catastrophic extreme flood occurs due to dam break, the response time for flood warning is much shorter than for natural floods. Numerical models can be powerful tools to predict behaviors in flood wave propagation and to provide the information about the flooded area, wave front arrival time and water depth and so on. But flood wave propagation due to dam break can be a process of difficult mathematical characterization since the flood wave includes discontinuous flow and dry bed propagation. Nevertheless, a lot of numerical models using finite volume method have been recently developed to simulate flood inundation due to dam break. As Finite volume methods are based on the integral form of the conservation equations, finite volume model can easily capture discontinuous flows and shock wave. In this study the numerical model using Riemann approximate solvers and finite volume method applied to the conservative form for two-dimensional shallow water equation was developed. The MUSCL scheme with surface gradient method for reconstruction of conservation variables in continuity and momentum equations is used in the predictor-corrector procedure and the scheme is second order accurate both in space and time. The developed finite volume model is applied to 2D partial dam break flows and dam break flows with triangular bump and validated by comparing numerical solution with laboratory measurements data and other researcher's data.

A Diagnostic Study on High School Students' Health and Quality of Life - Based on the PRECEDE model - (고등학생의 건강 및 삶의 질에 대한 진단적 연구 - PRECEDE 모형을 근간으로 -)

  • Yoo Jae-Soon;Hong Yeo-Shin
    • The Journal of Korean Academic Society of Nursing Education
    • /
    • v.3
    • /
    • pp.78-98
    • /
    • 1997
  • Health education, as the most fundamental concept for national health promotion, alms for developing the self-care ability of the general public. High school days are regarded as the period when most important physical, mental and social developments occur, and most health-related behaviors are formed. School health education is one of the major learning resources influencing health potential in the home and community as well as for the individual student. High school health education in Korea has a fundamental systemic flaw in that health-related subjects are divided and taught under various subjects areas at school. In order to achieve the goal of school health education, it is essential to make a systematic assessment of the learner's concerns connected with his health and life, and the factors affecting them. So far, most of the research projects that had been carried out for improving high school health education were limited in their concerns to a particular aspect of health. Even though some had been done in view of comprehensive school health education, they failed to Include a health assessment of the learner. Therefore, in this study the high school students' concerns related to health and life were investigated in the first place on the basis of the PRECEDE model, developed by Green and others for the purpose of a comprehensive diagnostic research on high school health education. This study was done in two steps : one was the basic study for developing research instrument and the other was the main one. The former was conducted at five high schools in Seoul and Cheongju for 2 months-beginning in March, 1996. The students were asked to respond to questions related to their health and lives in unstructured open-ended question forms. On the basis of analysis of the basic study, the diagnostic instruments for the quality of life, health problems, health behavior and educational factors were constructed to be used for the collection of data for main study. An expert panel and the pilot study were used to improve content validity and reliability of the instruments. The reliability of the instruments was measured at between .7697 and .9611 by the Cronbach $\alpha$. The data for this study were collected from the sample consisted of the junior and senior classes of twenty general and vocational high schools in Seoul and Cheongju for two months period beginning in July, 1996. In analyzing the data, both t-test and $X^2$-test were done by using SAS-$PC^+$ Program to compare data between the sexes of the high school students and the types of high school. A canonical correlation analysis was carried out to determine the relationships among the diagnostic variables, and a multivariate multiple regression analysis was conducted by using LISREL 8.03 to ascertain the influences of variables on the high school students' health and quality of life. The results were as follows : 1) The findings of the hypothesis tests (1) The canonical correlation between the educational diagnosis variables and behavioral, epidemiological, social diagnosis variables was .7221, which was significant at the level of p<.001. (2) The canonical correlation between the educational diagnosis variables and the behavior variables was .6851, which also was significant (p<.001). (3) The canonical correlation between the behavioral diagnosis variables and the epidemiological variables was 4295, which was significant (p<.001). (4) The canonical correlation between the epidemiological diagnosis variables and the social variables was .6005, which was also significant (p<.001). Therefore, the relationship between each diagnosis variable suggested by the PRECEDE model had been experimentally proven to be valid, supporting the conceptual framework of the study as appropriate for assessing the multi-dimensional factors affecting high school students' health and quality of life. Health behavior self-efficacy, the level of parents' interest and knowledge of health, and the level of the perception of school health education, all of which are the educational diagnostic variables, are the most influential variables in students' health and quality of life. In particular, health behavior self-efficacy, a causative factor, was one of the main influential variables in their health and quality of life. Other diagnostic variables suggested in the steps of the PRECEDE model were found to have reciprocal relations rather than a unidirectional causative relationship. The significance of this research is that it has diagnosed the needs of high school health education by the learner-centered assessment of variety of factors related to the health and the life of the students. This research findings suggest an integrated system of school health education to be contrived to enhance the effectiveness of the education by strengthening the influential factors such as self-efficacy to improve the health and quality of the lives of high school students.

  • PDF

Quantitative Analysis of Digital Radiography Pixel Values to absorbed Energy of Detector based on the X-Ray Energy Spectrum Model (X선 스펙트럼 모델을 이용한 DR 화소값과 디텍터 흡수에너지의 관계에 대한 정량적 분석)

  • Kim Do-Il;Kim Sung-Hyun;Ho Dong-Su;Choe Bo-young;Suh Tae-Suk;Lee Jae-Mun;Lee Hyoung-Koo
    • Progress in Medical Physics
    • /
    • v.15 no.4
    • /
    • pp.202-209
    • /
    • 2004
  • Flat panel based digital radiography (DR) systems have recently become useful and important in the field of diagnostic radiology. For DRs with amorphous silicon photosensors, CsI(TI) is normally used as the scintillator, which produces visible light corresponding to the absorbed radiation energy. The visible light photons are converted into electric signal in the amorphous silicon photodiodes which constitute a two dimensional array. In order to produce good quality images, detailed behaviors of DR detectors to radiation must be studied. The relationship between air exposure and the DR outputs has been investigated in many studies. But this relationship was investigated under the condition of the fixed tube voltage. In this study, we investigated the relationship between the DR outputs and X-ray in terms of the absorbed energy in the detector rather than the air exposure using SPEC-l8, an X-ray energy spectrum model. Measured exposure was compared with calculated exposure for obtaining the inherent filtration that is a important input variable of SPEC-l8. The absorbed energy in the detector was calculated using algorithm of calculating the absorbed energy in the material and pixel values of real images under various conditions was obtained. The characteristic curve was obtained using the relationship of two parameter and the results were verified using phantoms made of water and aluminum. The pixel values of the phantom image were estimated and compared with the characteristic curve under various conditions. It was found that the relationship between the DR outputs and the absorbed energy in the detector was almost linear. In a experiment using the phantoms, the estimated pixel values agreed with the characteristic curve, although the effect of scattered photons introduced some errors. However, effect of a scattered X-ray must be studied because it was not included in the calculation algorithm. The result of this study can provide useful information about a pre-processing of digital radiography.

  • PDF