• Title/Summary/Keyword: twist pitch(pitch)

Search Result 40, Processing Time 0.029 seconds

Design Optimization of QTP-UAV Prop-Rotor Blade Using ModelCenter (ModelCenter를 이용한 QTP-UAV 프롭로터 블레이드 형상 최적설계)

  • Kang, Hee Jung
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.4
    • /
    • pp.36-43
    • /
    • 2017
  • Blade design optimization of QTP-UAV prop-rotor was conducted using ModelCenter(R). Performance efficiency of the blade in hover and forward flight were adopted as the multi-objective function. Required power and pitch link force applied to constraint in each flight mode and limited lower than the value of the baseline blade. Design variables of root chord length of the blade, taper ratio, twist slope, twist angle at 0.5R of the blade, anhedral angle, parabolic coefficient of a tip shape and location of airfoil were used to generate the blade planform. CAMRAD-II, the comprehensive analysis program of rotorcraft, was used for performance analysis of prop-rotor blade in design process. Performance of the optimized blade improved 1.6% of figure of merit in hover and 13.6% of propulsive efficiency in forward flight. Pitch link force also reduced approximately 30% less than that of the baseline blade.

Aeroelastic Stability Analysis of Hingeless Rotor Blades with Composite Flexures

  • Kim, Seung-Jo;Kim, Ki-Tae;Jung, Sung-Nam
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.512-521
    • /
    • 2002
  • The flap-lag-torsion coupled aeroelastic behavior of a hingeless rotor blade with composite flexures in hovering flight has been investigated by using the finite element method. The quasisteady strip theory with dynamic inflow effects is used to obtain the aerodynamic loads acting on the blade. The governing differential equations of motion undergoing moderately large displacements and rotations are derived using the Hamilton's principle. The flexures used in the present model are composed of two composite plates which are rigidly attached together. The lead-lag flexure is located inboard of the flap flexure. A mixed warping model that combines the St. Versant torsion and the Vlasov torsion is developed to describe the twist behavior of the composite flexure. Numerical simulations are carried out to correlate the present results with experimental test data and also to identify the effects of structural couplings of the composite flexures on the aeroelastic stability of the blade. The prediction results agree well with other experimental data. The effects of elastic couplings such as pitch-flap, pitch-lag, and flap-lag couplings on the stability behavior of the composite blades are also investigated.

Electra-Optic and Ionic Properties of Twisted Nematic Cells With Different Chiral Pitch

  • Kim, Sung-Woon;Park, Hee-Do;Kim, Hee-Cheol;Park, Young-Il;Suh, Dong-Hae;Lee, Won-Geon;Park, Hae-Sung
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.504-507
    • /
    • 2002
  • We investigated electro-optic and ionic properties of twisted nematic cells by using control of chiral pitch. These properties are observed in practical experiment and simulations. C-V and V-T curve characteristics were obtained from three types of cells with d/p. It is shown that d/p ratio of short cells exhibit faster response time improved by 20% than normal cell. Also, inter-gray response time is improved each rise time and decay time. And, the increase of saturation voltage is happened because of the small twist angel change from initial state at high voltage near 5V. To compensate for longer black level tail, gamma curve index was varied from g = 2.2 to g = 2.7 in module status. Additionally, adding chiral dopant into TN cells improved ionic characteristics such as increasing VHR, Ion density and DC Hysteresis were decreased..

  • PDF

AN INVESTIGATION ON HVLS FAN PERFORMANCE WITH DIFFERENT BLADE CONFIGURATIONS (날개 형상에 따른 HVLS의 성능에 관한 연구)

  • Moshfeghi, Mohammad;Hur, Nahmkeon;Kim, Young Joo;Kang, Hyun Wook
    • Journal of computational fluids engineering
    • /
    • v.19 no.4
    • /
    • pp.80-85
    • /
    • 2014
  • High-volume low-speed (HVLS) fans are one category of ceiling fan installed in large enclosings such as warehouses, large barns and health clubs in order to generate comfortable air circulation. As a rotary blade, aerodynamic performance of a HVLS fan is predominantly related to its airfoil(s), and the pitch and twist angles. This paper first, investigates the effects of airfoil on the performances of three different HVLS fans with NACA 5414, 6413 and 7415 airfoils. The fans have six untwisted blades with the diameter of 6 m and rotate at 60 RPM. The blades pitch angels are $12^{\circ}$, $12^{\circ}$ and $13^{\circ}$, respectively. The results are presented in the form of the aerodynamic forces and moments, volumetric flow rate and streamlines. Regarding the volumetric flow of air, the results show that the model with NACA 7415 has the best performance. Hence, two other HVLS fans with the same airfoil but, with four and five blades are studied in order to investigate the effects of number of blades. From the point of view of air circulation still the six-bladed fan is the best one; however, the five-bladed fan is more efficient in power consumption.

Numerical study to Determine Optimal Design of 500W Darrieus-type Vertical Axis Wind Turbine (500W 급 다리우스형 풍력발전기의 최적설계를 위한 수치적 연구)

  • Lee, Young Tae;Lim, Hee Chang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.8
    • /
    • pp.693-702
    • /
    • 2015
  • This paper presents the performance characteristics of a Darrieus-type vertical-axis wind turbine (VAWT) with National Advisory Committee for Aeronautics (NACA) airfoil blades. To estimate the optimum shape of the Darrieus-type wind turbine in accordance with various design parameters, we examine the aerodynamic characteristics and separated flow occurring in the vicinity of the blade, the interaction between the flow and blade, and the torque and power characteristics that are derived from it. We consider several parameters (chord length, rotor diameter, pitch angle, and helical angle) to determine the optimum shape design and characteristics of the interaction with the ambient flow. From our results, rotors with high solidity have a high power coefficient in the low tip-speed ratio (TSR) range. On the contrary, in the low TSR range, rotors with low solidity have a high power coefficient. When the pitch angle at which the airfoil is directed inward equals $-2^{\circ}$ and the helical angle equals $0^{\circ}$, the Darrieus-type VAWT generates maximum power.

The Influence of a Filament Twist Pitch on Transport Losses in a Bi-2223 Tape (필라멘트트위스트피치가 Bi-2223테이프의 통전손실에 미치는 영향)

  • Jung, Jae-Hoon;Ryu, Kyung-Woo;Choi, Byung-Ju;Jang, Seok-Hern;Joo, Jin-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.854-856
    • /
    • 2002
  • 필라멘트의 트위스트피치가 Bi-2223테이프의 통전손실에 미치는 영향에 대해 실험적으로 조사하였으며, 그 주요 결과는 Bi-2223테이프의 자기자계손실은 필라멘트의 트위스트피치에 의해서는 그다지 영향을 받지 않는 반면 외부교류자장 하에서 Bi-2223테이프에 발생되는 통전손실은 트위스트피치에 영향을 비교적 크게 받으며, 필라멘트의 트위스트피치가 작을수록 통전손실도 작아진다.

  • PDF

Self-field loss analysis of multifilamentary superconducting wire (초전도 선재에서의 자기 자계 손실 해석)

  • Lee, Ji-Kwang;Kim, Woo-Seok;Hahn, Song-Yop;Kim, Ho-Sung;Cha, Guee-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.160-162
    • /
    • 1996
  • The estimation of AC losses is demanded for higher efficiency and stability in AC use of superconducting coils. Hysteresis loss occurred by a.c. transport current is called of self field loss, and it is major part of losses generated in a.c. superconducting wire in case of located in low external magnetic field as superconducting transformer with iron core, or in short twist pitch wire, multiply stacking cable. In this paper, we calculate self field loss of superconducting wire.

  • PDF

Current Distribution Analysis of Multifilamentary Superconducting Wire (초전도 선재에서의 전류 분포 해석)

  • Lee, Ji-Kwang;Kim, Dong-Hun;Hahn, Song-Yop;Cha, Guee-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.44-46
    • /
    • 1996
  • Superconducting cable is using by bundling and twisting with many strands for large current capacity. As a result of the twisting, the magnetic field whose direction is parallel to a sound axis by the transport current of themselves is produced in the cable. Not only the externally exposed longitudinal field but also longitudinal component of self field make a influence on a.c loss and a.c quench current degradation. In this paper, we calculate the saturated region flowing with the critical current density in a strand in case of various twist pitch, transport current and external longitudinal field.

  • PDF

A Study of fabrication and microstructural evolution of twisted BSCCO superconductor tape (Twisting된 BSCCO 선재 제조 및 미세조직 연구)

  • 임준형;지봉기;박형상;주진호;장미혜;고태국;이상진;하홍수;오상수
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2000.02a
    • /
    • pp.112-114
    • /
    • 2000
  • We fabricated BSCCO multifilaments superconductor tape and evaluated the effect of twisting on the microstructural evolution and critical current. Twist pitches of the tapes are in the range of 70 - 8 mm and uniformly deformed. It was observed that grain size and the degree of texture decreased as decreasing pith, probably due to the formation of the irregular interface between Ag and filaments. In addition, critical current of the tapes decreased to 6.5A with decreasing pitch to 8 mm, showing 48% of degradation compared to the untwisted tape(12.5 A). These reduction of critical current may be related to the interface irregularity, smaller grain size, worse texture and the presence of cracks due to the induced strain during twisting processing.

  • PDF

Dynamic Characteristic Analyses of a Bearingless Helicopter Rotor Systems (무베어링 헬리콥터 로터 시스템의 동특성 해석)

  • Kee, Young-Jung;Yun, Chul-Yong;Kim, Seung-Ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.52-56
    • /
    • 2011
  • Recently, KARI(Korea Aerospace Research Institute) has been developing a modern 11.5m diameter four bladed bearingless main rotor system, and this rotor system can be used for 7,000lb class helicopter. Flexbeam and torque tube can be considered as the key structural components, and large elastic twist of flexbeam induced by pitch control motion of torque tube can influence the nonlinear aeroelastic behavior. In this paper, the dynamic characteristic analysis results of bearingless rotor system were presented. In order to construct a input model and validate the analysis procedures, calculated results using the comprehensive helicopter analysis program CAMRAD II were compared with the measured natural frequencies and lag damping data from small-scale wind tunnel test. Next, the analysis model was extended to a full-scale model, and the dynamic analysis results were presented.

  • PDF