• Title/Summary/Keyword: twins

Search Result 289, Processing Time 0.028 seconds

Analysis of dislocation density in strain-hardened alloy 690 using scanning transmission electron microscopy and its effect on the PWSCC growth behavior

  • Kim, Sung-Woo;Ahn, Tae-Young;Kim, Dong-Jin
    • Nuclear Engineering and Technology
    • /
    • v.53 no.7
    • /
    • pp.2304-2311
    • /
    • 2021
  • The dislocation density in strain-hardened Alloy 690 was analyzed using scanning transmission electron microscopy (STEM) to study the relationship between the local plastic strain and susceptibility to primary water stress corrosion cracking (PWSCC) in nuclear power plants. The test material was cold-rolled at various thickness reduction ratios from 10% to 40% to simulate the strain-hardening condition of plant components. The dislocation densities were measured at grain boundaries (GB) and in grain interiors of strain-hardened specimens from STEM images. The dislocation density in the grain interior monotonically increased as the strain-hardening proceeded, while the dislocation density at the GB increased with strain-hardening up to 20% but slightly decreases upon further deformation to 40%. The decreased dislocation density at the GB was attributed to the formation of deformation twins. After the PWSCC growth test of strain-hardened Alloy 690, the fraction of intergranular (IG) fracture was obtained from fractography. In contrast to the change in the dislocation density with strain-hardening, the fraction of IG fracture increased remarkably when strain-hardened over 20%. From the results, it was suggested that the PWSCC growth behavior of strain-hardened Alloy 690 not only depends on the dislocation density, but also on the microstructural defects at the GB.

Affective Interaction Technologies for Human Care (휴먼 케어를 위한 초실감 감성 상호작용 기술)

  • Kim, J.S.;Park, C.J.;Lee, K.S.;Kim, M.;Yoo, W.Y.;Jee, H.K.;Jeong, I.K.
    • Electronics and Telecommunications Trends
    • /
    • v.36 no.1
    • /
    • pp.43-53
    • /
    • 2021
  • Super-realistic content technology has recently attracted attention as a core of the "new normal" that can overcome the spatial constraints caused by pandemics. It is moreover the core that allows users in remote locations to meet and engage in various social, cultural, and economic activities based on a network. Content technology is rapidly spreading beyond the existing entertainment area to various industries as an innovative tool that can be used to overcome space-time constraints and improve the productivity of industrial sites, because reality and virtual reality are now super-connected with ultra-low latency. However, existing services such as teleconferencing and tele-collaboration do not provide a level of realism that replaces face-to-face services, and various technical requirements have been proposed to overcome this. The trends in core technologies such as XR twins, hyper-realistic reproduction, sensory interaction, and emotional recognition technology, which are necessary for interactive realistic content that leads to feelings, from reproduction to experience and emotion, are explained. In this article, our aim is to present the future of realistic content that enables human care and can even overcome psychological difficulties such as the "Corona blues".

Study on 3D Object (Building) Update and Construction Method for Digital Twin Implementation (디지털 트윈 구현을 위한 3차원 객체(건물) 갱신 및 구축 방안 연구)

  • Kwak, Byung-Yong;Kang, Byoung-Ju
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.4
    • /
    • pp.186-192
    • /
    • 2021
  • Recently, the demand for more precise and demand-oriented customized spatial information is increasing due to the 4th industrial revolution. In particular, the use of 3D spatial information and digital twins which based on spatial information, and research for solving social problems in cities by using such information are continuously conducted. Globally, non-face-to-face services are increasing due to COVID-19, and the national policy direction is also rapidly progressing digital transformation, digitization and virtualization of the Korean version of the New Deal, which means that 3D spatial information has become an important factor to support it. In this study, physical objects for cities defined by world organizations such as ISO, OGC, and ITU were selected and the target of the 3D object model was limited to buildings. Based on CityGML2.0, the data collected using a drone suitable for building a 3D model of a small area is selected to be updated through road name address and building ledger, which are administrative information related to this, and LoD2.5 data is constructed and urban space. It was intended to suggest an object update method for a 3D building among data.

Aspects Of Architectural Design Using BIM Technologies

  • Tikhonova, Oleksandra;Selikhova, Yana;Donenko, Vasyl;Kulik, Mykhailo;Frolov, Denys;Iasechko, Maksym
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.1
    • /
    • pp.85-92
    • /
    • 2022
  • In this article, we look at the application of BIM (Building Information Modeling) in sustainable infrastructures. In response to global warming, energy shortages, and environmental degradation, people are trying to build eco-friendly, low-carbon cities and promote eco-friendly homes. A "green" building is the entire life cycle of a building that includes maximizing the conservation of resources (energy, water, land, and materials), protecting the environment, reducing pollution, providing people with healthy, comfortable, and efficient use of space, and establishing harmony between nature and architecture. In the field of ecological and sustainable buildings, BIM modeling can be integrated into buildings with analog energy, air flow analysis, and solar building ecosystems. Using BIM technologies, you can reduce the amount of waste and improve the quality of construction. These technologies create "visualization" of digital building models through multidimensional digital design solutions that provide" modeling and analysis "of Scientific Collaboration Platforms for designers, architects, utility engineers, developers, and even end users. Moreover, BIM helps them use three-dimensional digital models in project design and construction and operational management.

Development of Smart Factory-Based Technology Education Platform Linking CPPS and VR (CPPS 및 VR을 연계한 스마트팩토리 기반 기술 교육 플랫폼 개발)

  • Lee, Hyun
    • Journal of Practical Engineering Education
    • /
    • v.13 no.3
    • /
    • pp.483-490
    • /
    • 2021
  • In this paper, we proposed the development of a smart factory intergrated technology education platform using smart factory based CPPS (Cyber Physical Production System) and VR (Vitrual Reality) technology and educational methods using the platform. A platform has been developed to learn how to integrate 3D digital twin and BOP (Bill of Process)-based manufacturing processes. In addition, Digital Twin established a smart factory-based integrated education platform by linking mechanical systems, digital twins, and virtual reality through the OPC-UA server. Based on this platform, the smart factory integration platform is proposed to have individual elements of the smart factory integration platform through BOP-based digital twin simulation, OPC-UA integration, MES system, SCADA system, and VR interworking.

Design for Weapon Live Test Decision Support System Using Digital Twin Architecture (디지털 트윈 아키텍처를 활용한 무기체계 성능시험 지원체계 설계)

  • Kim, Eungsu;Ryu, Kiyeol
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.5
    • /
    • pp.501-512
    • /
    • 2022
  • The purpose of the weapon live test during the phase of development is to provide essential information to decision makers that verify and validate the performance capabilities of weapons. Due to varying allocation and high variance of test resources with an increase in the weapon system's capability, the test environment can get highly complex, which can lead to a decrease in the reliability of test results. This issue can be addressed by applying a decision support system that provides various timely information collected by resources during the test process. The decision support system can be designed by applying the concept of digital twins, that are defined as digital replicas of components, systems and processes. This paper describes a design methodology of the decision support system that consists of digital models and service functions using digital twin architecture. A case study illustrates the feasibility of the proposed methodology in supporting the weapon live test process.

AR-based 3D Digital Map Visualization Support Technology for Field Application of Smart Construction Technology

  • Song, Jinwoo;Hong, Jungtaek;Kwon, Soonwook
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.1255-1255
    • /
    • 2022
  • Recently, research on digital twins to generate digital information and manage construction in real-time using advanced technology is being conducted actively. However, in the construction industry, it is difficult to optimize and apply digital technology in real-time due to the nature of the construction industry in which information is constantly fluctuating. In addition, inaccurate information on the topography of construction projects is a major challenge for earthmoving processes. In order to ultimately improve the cost-effectiveness of construction projects, both construction quality and productivity should be addressed through efficient construction information management in large-scale earthworks projects. Therefore, in this study, a 3D digital map-based AR site management work support system for higher efficiency and accuracy of site management was proposed by using unmanned aerial vehicles (UAV) in wide earthworks construction sites to generate point cloud data, building a 3D digital map through acquisition and analysis of on-site sensor-based information, and performing the visualization with AR at the site By utilizing the 3D digital map-based AR site management work support system proposed in this study, information is able to be provided quickly to field managers to enable an intuitive understanding of field conditions and immediate work processing, thereby reducing field management sluggishness and limitations of traditional information exchange systems. It is expected to contribute to the improvement of productivity by overcoming factors that decrease productivity in the construction industry and the improvement of work efficiency at construction sites.

  • PDF

Augmented Reality Framework for Data Visualization Based on Object Detection and Digital Twins

  • Pham, Hung;Nguyen, Linh;Huynh, Nhut;Lee, Yong-Ju;Park, Man-Woo
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.1138-1145
    • /
    • 2022
  • While pursuing digitalization and paperless projects, the construction industry needs to settle on how to make the most of digitized data and information. On-site workers, who currently rely on paper documents to check and review design and construction plans, will need alternative ways to efficiently access the information without using any paper. Augmented Reality is a potential solution where the information customized to a user is aligned with the physical world. This paper proposes the Augmented Reality framework to deliver the information on on-site resources (e.g., workers and equipment) using head-mounted devices. The proposed framework was developed by interoperating Augmented Reality-supported devices and a digital twin platform in which all information related to ongoing tasks is accumulated in real-time. On-site resources appearing in the user's field of view are automatically detected by an object detection algorithm and then assigned to the corresponding information by matching the data in the digital twin platform. Preliminary experiments show the feasibility of the proposed framework. Worker detection results can be visualized on HoloLens 2 in near real-time, and the matching process obtained the accuracy greater than 88%.

  • PDF

An Industry-Service Classification Development of Metaverse Platform (메타버스 플랫폼 활용 산업-서비스 분류체계 개발)

  • Yun, Seung-Mo;Leem, Choon-Seong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.253-258
    • /
    • 2021
  • With the 4th Industrial Revolution and the development of technology, markets of the VR&AR have increased. Also due to COVID-19 pandemic, demands for a digital environment were required because of physical space constraints. Firms are trying to solve this problem by using Metaverse platforms. However, with markets such as Metaverse, VR, AR, and Digital Twins are expanding, prior research on Metaverse definition or classification system is insufficient. Based on understanding VR&AR, Digital Twin, this study established a Industry-Service classification for Metaverse by defining Case studies on Metaverse and through prior research. And by Industry-Service classification for Metaverse this paper propose Metaverse Industry-Service Matrix to analyze the trend and possibility of Metaverse Platform

  • PDF

Analysis of Applicability of Visual SLAM for Indoor Positioning in the Building Construction Site (Visual SLAM의 건설현장 실내 측위 활용성 분석)

  • Kim, Taejin;Park, Jiwon;Lee, Byoungmin;Bae, Kangmin;Yoon, Sebeen;Kim, Taehoon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.47-48
    • /
    • 2022
  • The positioning technology that measures the position of a person or object is a key technology to deal with the location of the real coordinate system or converge the real and virtual worlds, such as digital twins, augmented reality, virtual reality, and autonomous driving. In estimating the location of a person or object at an indoor construction site, there are restrictions that it is impossible to receive location information from the outside, the communication infrastructure is insufficient, and it is difficult to install additional devices. Therefore, this study tested the direct sparse odometry algorithm, one of the visual Simultaneous Localization and Mapping (vSLAM) that estimate the current location and surrounding map using only image information, at an indoor construction site and analyzed its applicability as an indoor positioning technology. As a result, it was found that it is possible to properly estimate the surrounding map and the current location even in the indoor construction site, which has relatively few feature points. The results of this study can be used as reference data for researchers related to indoor positioning technology for construction sites in the future.

  • PDF