• Title/Summary/Keyword: twin screw extrusion

Search Result 79, Processing Time 0.027 seconds

Shape Design and Specific Torque Characteristics of the Extrusion Twin Screw (압출용 2축 스크류의 형상설계 및 비토크 특성)

  • 최부희;최상훈
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.8
    • /
    • pp.185-193
    • /
    • 2003
  • The modular self-wiping co-rotating twin screw extruder (SWCOR) has become the most important of twin screw machines. Screw design is one of the most important factors in determining performance of screw extruder. The screw flight and screw channel geometry of SWCOR is determined by the screw diameter, centerline distance, helix angle, and flights number. The maximum allowable throughput rate on a twin screw extruder is determined by a combination of free volume and available specific torque. In this paper we designed geometrical parameters of extruder screw and presented optimal specific torque value in K=1.55, and then developed screw design program for the screw cutting by the use of JAVA API in the twin screw extruder.

Modification of Physico-chemical Properties of Wheat Bran by Twin-screw Extrusion Process -1. Effect of Screw Configuration and Process Parameters on System Parameters- (이축 압출성형 공정에 의한 밀기울의 물리화학적 변형 -1. 스크류의 조합과 공정변수 조절에 따른 시스템 변수의 변화-)

  • Kim, Chong-Tai;Hwang, Jae-Kwan;Cho, Sung-Ja;Kim, Chul-Jin;Kim, Hae-Sung
    • Korean Journal of Food Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.404-413
    • /
    • 1995
  • System parameters (extrusion temperature, extrusion pressure, specific mechanical energy, mean residence time) were analysed on three different screw configurations during twin-screw extrusion of wheat bran. Experiments were conducted over a screw speed of $280{\sim}380\;rpm$, feed rate of $22{\sim}38\;kg/hr$ and moisture content of $17{\sim}33%$ using screws assembled with 3, 4, and 5 reverse screw elements (RSE) adjacent to the heating zone of the barrel. Extrusion temperature increased with increasing RSE but it decreased with increasing feed rate and moisture content. Decreasing the filling ratio of the screw resulted in a lower extrusion pressure, and increasing the length of the RSE gave similar results due to the higher temperature and lower viscosity of melted dough. It was also observed that increasing the feed rate and decreasing moisture content resulted in the reduced extrusion pressure. Specific mechanical energy (SME) decreased when the feed rate and moisture content increased, and SME increased when using RSE posses from 3 to 5. Screw configuration posses with 4 RSE yielded the longest RT, and the smaller the die hole, the higher the RT. In contrast, RT decreased when the feed rate increased. With increasing moisture content RT for 3 RSE increased, but that for 4 and 5 RSE decreased.

  • PDF

Development of polypropylene-clay nanocomposite with supercritical $CO_2$ assisted twin screw extrusion

  • Hwang, Tae-Yong;Lee, Sang-Myung;Ahn, Young-Joon;Lee, Jae-Wook
    • Korea-Australia Rheology Journal
    • /
    • v.20 no.4
    • /
    • pp.235-243
    • /
    • 2008
  • The aim of this study is to explore the possibility of incorporating supercritical carbon dioxide ($scCO_2$) into twin screw extrusion process for the production of polypropylene-clay nanocomposite (PPCN). The $CO_2$ is used as a reversible plasticizer which is expected to rapidly transport polymeric chains into the galleries of clay layers in its supercritical condition inside the extruder barrel and to expand the gallery spacings in its sub-critical state upon emerging from die. The structure and properties of the resulting PPCNs are characterized using wide-angle X-ray diffraction (WAXD), transmission electron microscopy (TEM), rheometry, thermogravimetry and mechanical testing. In the processing of the PPCNs with $scCO_2$, optimum $scCO_2$ concentration and screw speed which maximized the degree of intercalation of clay layers were observed. The WAXD result reveals that the PP/PP-g-MA/clay system treated with $scCO_2$ has more exfoliated structure than that without $scCO_2$ treatment, which is supported by TEM result. $scCO_2$ processing enhanced the thermal stability of PPCN hybrids. From the measurement of linear viscoelastic property, a solid-like behavior at low frequency was observed for the PPCNs with high concentration of PP-g-MA. The use of $scCO_2$ generally increased Young's modulus and tensile strength of PPCN hybrids.

Extrusion-cooking Using Twin-screw Extruder on Cordyceps Pruinosa (이축 압출 성형기를 이용한 붉은자루 동충하초의 압출 성형)

  • Kim D. E.;Sung J. M.;Kang W. S.
    • Journal of Biosystems Engineering
    • /
    • v.30 no.1 s.108
    • /
    • pp.8-16
    • /
    • 2005
  • The extrusion-cooking condition on Cordyceps pruinosa was designed using twin-screw extruder. Response surface methodology (RSM) was used to investigate extrusion-cooking using a central composition design with varying die temperature $(114-146^{\circ}C)$, feed moisture $(22-38\%)$, feed rate (4-14 ka/h) and screw speed (120-280 rpm). System parameters (die pressure and specific mechanical energy (SME)) and extrudate parameters (density and water solubility index (WSI)) were statically analyzed using RSH. Die pressure was significantly affected by temperature, moisture contents and feed rate. SM was affected by screw speed and feed rate. When die temperature is $130^{\circ}C$ and moisture content $25\%$, the optimum pressure is shown. SME is about 20 Wh/kg, when feed rate is $10\~12kg/min$ and screw speed $200\~250rpm$. WSI was affected by temperature and moisture contents. Density was not affected by any factor. WSI increases by $7\%$ from about $23\%$ to about $30\%$, as temperature is raised from $120^{\circ}C\;to\;140^{\circ}C$. The WSI of Cordyceps pruinosa pulverized after extruding (PE) is about $26.97\%$ higher than that of raw material and $10\%$ higher than that of pulverized after drying (PD). The content of unsaturated fatty acid were not significantly different in PD and PE. Anti-oxidative activity of PE was 1.67-2.2 times higher than that of PD in Cordyceps pruinosa using 1- dipheny1-2-picrylhydrazyl method (DPPH).

Numerical analysis of internal flow and mixing performance in polymer extruder II: twin screw element

  • Kim, Nak-Soo;Kim, Hong-Bum;Lee, Jae-Wook
    • Korea-Australia Rheology Journal
    • /
    • v.18 no.3
    • /
    • pp.153-160
    • /
    • 2006
  • We analyzed the non-Newtonian and non-isothermal flow with Carreau-Yasuda viscosity model in co-rotating and counter-rotating twin screw extruder systems. The mixing performances with respect to the screw speed, the screw pitch, and the rotating direction have been investigated. The dynamics of mixing was studied numerically by tracking the motions of particles. The extent of mixing was characterized in terms of the deformation rate, the residence time distribution, and the average strain. The results showed that the high screw speed decreases the residence time but increases the deformation rate. Small screw pitch increases the residence time. It is concluded that the high screw speed increases the dispersive mixing performance, while the small screw pitch increases the distributive mixing performance. Co-rotating screw extruder has the better conveying performance and the distributive mixing performance than counter-rotating screw extruder with the same screw speed and pitch. Co-rotating screw extruder developed faster transport velocity and it is advantageous the flow characteristics to the mixing that transfers polymer melt from one barrel to the other barrel.

Extrusion Effect on the Reduction of Fumonisin $B_1$ in Corn Grits with/or without Sugars (당류 첨가 및 비첨가 옥수수에서의 Fumonisin $B_1$ 감소에 미치는 Extrusion 효과)

  • ;Lloyd B. Bullerman
    • The Korean Journal of Food And Nutrition
    • /
    • v.13 no.6
    • /
    • pp.547-552
    • /
    • 2000
  • Corn grits spiked with fumonisin B$_1$(FB$_1$) at a level of 5 $\mu$g/g were extrusion cooked in a co-rotating twin screw extruder at different temperatures(140, 160, 18$0^{\circ}C$) and screw speed(80, 100, 120 rpm). About 41~45% of the spiked FB$_1$ was lost when the corn grits were extruded. Both the barrel temperature and the screw speed. however, did not significantly affect the FBI reduction in extruded corn grits. More reduction of FB$_1$ was found in the presence of glucose than with fructose or sucrose when the corn grits were extruded with sugar at 14$0^{\circ}C$, 120 rpm. About 51, 34 and 19% of spiked FB$_1$ were remained in extruded corn grits with glucose at levels of 2.5%, 5%, and 7.5%, respectively.

  • PDF

Extrusion of Ginseng Root in Twin Screw Extruder: Pretreatment for Hydrolysis and Saccharification of Ginseng Extrudate

  • Han, Jae-Yoon;Kim, Mi-Hwan;Tie Jine;Solihin Budiasih W.;Ryu, Gi-Hyung
    • Preventive Nutrition and Food Science
    • /
    • v.11 no.4
    • /
    • pp.318-322
    • /
    • 2006
  • The objective of this experiment was to investigate the effect of extrusion of ginseng roots in twin screw extruder on susceptibility of ginseng starch toward hydrolysis by ${\alpha}-amylase$ BAN 480L (Novozyme, Denmark) and cellulase Celluclast 150L and saccharification by amyloglucosidase AMG-E (Novozyme, Denmark). The extrusion was conducted at 22% and 30% moisture contents of feed at screw speed 300 rpm. Barrel temperature at zone 1 was adjusted at $100^{\circ}C$ and $120^{\circ}C$. The results showed that extrusion process improved the ginseng ${\alpha}-amylase$ susceptibility as compared to traditionally dried ginseng (white and red ginseng). Reducing sugar of hydrolyzed extruded samples was 2,500% of its initial concentration, whereas the reducing sugar of hydrolyzed non-extruded sample was only 200% of its initial concentration. However, addition of cellulase during liquefaction lowered the saccharification yield of both non-extruded and extruded samples as well.

Design Parameters and Conveying Characteristics of Twin Screw Extruder (2축(軸) 압출기(押出機)의 설계요인(設計要因) 및 이송량(移送量)에 관한 분석(分析))

  • Song, D.B.;Koh, H.K.;Kim, Y.H.
    • Journal of Biosystems Engineering
    • /
    • v.19 no.1
    • /
    • pp.50-61
    • /
    • 1994
  • This research was conducted to determine a preliminary design parameters for the development of twin screw extruder using Booy's screw design method, and to analyze a extrusion process using Janssen's mathematical flow model. In processing process, the experimental mass flow rates of com flour and wheat flour were almost the same as theoretical values corrected by correction factors of 0.95 and 0.6 respectively. It was appeared that the mathematical model would be suitable to predict the conveying capacity.

  • PDF

Effects of Raw Material and Extrusion Cooking Conditions on Physical and Chemical Properties of the Puffed Rice Extrudate (쌀의 원료상태 및 Extrusion Cooking 조건이 Puffed Extrudate의 특성에 미치는 영향)

  • Lee, Young-Chun;Ha, Yean-Chul;Bock, Jin-Young;Shin, Dong-Bin;Lee, Kyung-Hae
    • Korean Journal of Food Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.105-109
    • /
    • 1990
  • A laboratory scale co-rotating twin-screw extruder (D24 mm, L/D=14) was used for the extrusion of rice, which could be used for a puffed rice snack. As screw speed of the extrusion cooker was increased from 200 to 360 rpm, air cells structure of the extrudate from glutinous rice powder was improved to small and uniform air cells, and the moisture conetent of rice powder should be maintained to 15-17.5% for better texture of the extrudate. Objective and sensory texture of the extrudate from powder was better than those from grits, and there was no significant difference in textural properties between extrusion made with rice and glutinous rice.

  • PDF

Effect of Process Variables on System Parameters in Extrusion Cooking of Corn Grit by Twin Screw Extruder (옥분 압출가공시 이축압출성형기의 운전조건에 따른 System Parameters의 변화)

  • Kim, Ji-Yong;Kim, Chong-Tai;Kim, Chul-Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.23 no.1
    • /
    • pp.81-87
    • /
    • 1991
  • To examine the effect of the individual operational variables on extrusion process, test trials of the fractional factorial design of the three process variables at three levels, including feed rate, screw speed and die openings, were carried out by using a laboratory scale twin-screw extruder with three different screw configuration for corn grit with the water addition fixed at 15% of the powder feed rate. As the increase of feed rate, while extrusion temperature(ET), specific mechanical energy input (SME), and residence time(RT) were showed the tendency to decrease, extrusion pressure(EP) was increased and as the increase of screw speed, ET, SME and EP were showed the tendency to increase, but RT was decreased. However, as increase the number of die hole, all system parameters were showed the tendency to decrease. The influence of the change in each process parameters was increased as the increase of the number of reverse element in screw configuration. In case of using the screw configuration with increasing number of reverse element at the condition of same process parameters, ET, SME and RT was increased, but EP was decreased. The functional relationships of the system parameters to the process parameters can be quantified by using multiple regression equations(mostly R-sq>0.90) and maped on suface response diagrams to expedite evaluation.

  • PDF