• Title/Summary/Keyword: turbulent wind

Search Result 417, Processing Time 0.027 seconds

Power spectra of wind forces on a high-rise building with section varying along height

  • Huang, D.M.;Zhu, L.D.;Chen, W.
    • Wind and Structures
    • /
    • v.18 no.3
    • /
    • pp.295-320
    • /
    • 2014
  • The characteristics of amplitudes and power spectra of X axial, Y axial, and RZ axial (i.e., body axis) wind forces on a 492 m high-rise building with a section varying along height in typical wind directions are studied via a rigid model wind tunnel test of pressure measurement. Then the corresponding mathematical expressions of power spectra of X axial (across-wind), Y axial (along-wind) and torsional wind forces in $315^{\circ}$ wind directions are proposed. The investigation shows that the mathematical expressions of wind force spectra of the main structure in across-wind and torsional directions can be constructed by the superimposition of an modified wind spectrum function and a peak function caused by turbulent flow and vortex shedding, respectively. While that in along-wind direction can only be constructed by the former and is similar to wind spectrum. Moreover, the fitted parameters of the wind load spectra of each measurement level of altitude are summarized, and the unified parametric results are obtained. The comparisons of the first three order generalized force spectra show that the proposed mathematical expressions accord with the experimental results well.

Development of Aerodynamic Analysis Technology for Wind Turbines using a Multibody Dynamic Analysis Software (다물체 동력학 해석 프로그램을 이용한 풍력발전기 공력해석 기술개발)

  • Rim, Chae Whan;Bang, Je Sung;Cho, Huije;Moon, Seok Jun;Chung, Tae Young
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.180.2-180.2
    • /
    • 2010
  • Simulation technology for dynamic analysis of wind turbine is developed. The Aerodyn and the DAFUL are chosen for aerodynamic analysis and multi-body and flexible body dynamics respectively. Subroutines and variables of Aerodyn developed by NREL are analyzed with hub-height wind data, full field turbulent wind data and Airfoil data. The interface to perform coupled analysis between AeroDyn and DAFUL, GUI for modeling several parts of wind turbines are developed. The program will be extended to analyze the coupled analysis of aerodynamic and hydrodynamic behavior for floating offshore wind turbines.

  • PDF

A study on the Characteristics of Flows over Isolated Cone-type Hills (독립된 원뿔형 산악지형의 기류 특성에 관한 연구)

  • Cho, Kang-Pyo;Hong, Sung-Il;Cho, Gi-Sung;Lee, Ok-Jin
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.222-227
    • /
    • 2008
  • Complex terrain like hill, mountain, and escarpment etc. makes complex air flow. This topographic condition will affect not only speed but also turbulence of wind over the complex terrain. In this paper, turbulence intensities are considered to investigate characteristics of wind over cone-type hills. There are five simple hill models with different slope 0.1${\sim}$0.5(tan${\theta}$) for wind tunnel test. It was observed through wind tunnel tests that turbulence intensities of down-slope wind at the end of the 3-Dimensional hills remarkably increased but ones of windward slope wind at the front side of the hills slightly increased. Also, turbulence intensities proportionally increased with slope of the cone-type hills.

  • PDF

Experimental and Simulation Results for Sliding Mode Dynamic Wind Turbine Control using a DC Chopper

  • Riahy G.;Freere P.;Holmes D.G
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.650-655
    • /
    • 2001
  • Wind speeds can vary rapidly and wind turbines cannot easily follow these variations because of their inertia and aerodynamic characteristics. For maximum energy extraction. the turbine blades should operate at their optimum tip speed ratio, but with rapid changes in wind speed. this is usually not possible. To improve the energy extraction from turbulent wind, it is necessary to establish an effective measure of the high frequency component of the wind. and then to use this measure to optimise the operation of the turbine controller for maximum energy extraction. This paper presents an approach for combining readings from three anemometers into a composite wind speed measurement. and using this signal to control the operation of a permanent magnet generator to achieve maximum energy extraction. The method combines simulation and experimental investigations into a heuristic algorithm. and demonstrates its effectiveness with field trials.

  • PDF

An Analysis of Local Wind Field by Location of Industrial Complex using CALMET and ENVI-MET (CALMET 및 ENVI-MET를 이용한 산업단지 입지에 따른 국지 바람장 분석)

  • Song, Dong Woong
    • Journal of Environmental Impact Assessment
    • /
    • v.21 no.3
    • /
    • pp.417-429
    • /
    • 2012
  • In this study, a diagnostic wind model, CALMET and a micrometeorological numerical model, ENVI-MET were used to analyze the wind field in and out of the site designated for the industrial complex around Buron-myeon, Wonju, Gangwon-do. The results of modeling with CALMET showed that the air flow in industrial complex was little affected by the surrounding terrain. And the result of wind field analysis with ENVI-MET showed there are turbulent air flows such as cavity and wake around structures in the industrial complex, which can cause high-air pollution. Therefore, it is necessary to design the industrial complex considering the wind path according to wind directions.

Computational Analysis and an Application of Wind Environmental Effects for High-rise Buildings (초고층건물 주변의 풍환경에 대한 수치 해석 및 적용)

  • Chung Yungbea;Na Seonuk
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.70-75
    • /
    • 2001
  • This paper presents the results of numerical simulation of wind environment and wind coefficient around super high-rise building. The analysis of aerodynamic response due to wind-induced forces and wind effect to surrounding buildings is important to high-rise building. This paper simulates the wind force to the high-rise building and wind flow pattern around the high-rise building, and shows the usability of CFD analysis to design process of high-rise building. A Navier-Stokes-Solver (FLUENT) with Quick spatial discretization scheme and RNG $\kappa-\epsilon$ turbulence model has been applied to the computation of the three dimensional turbulent flow.

  • PDF

Probability distribution and statistical moments of the maximum wind velocity

  • Schettini, Evelia;Solari, Giovanni
    • Wind and Structures
    • /
    • v.1 no.4
    • /
    • pp.287-302
    • /
    • 1998
  • This paper formulates a probabilistic model which is able to represent the maximum instantaneous wind velocity. Unlike the classical methods, where the randomness is circumscribed within the mean maximum component, this model relies also on the randomness of the maximum value of the turbulent fluctuation. The application of the FOSM method furnishes the first and second statistical moments in closed form. The comparison between the results herein obtained and those supplied by classical methods points out the central role of the turbulence intensity. Its importance is exalted when extending the analysis from the wind velocity to the wind pressure.

Implementation of Wind Power System and Development of a Automatic Tail Safety Controller (풍력발전시스템의 강풍제어기 개발 및 시스템 구성)

  • Choi, Jung-Hoon;Moon, Chae-Joo;Jang, Yung-Hak;Lee, Hyun-Ju
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2004.05a
    • /
    • pp.424-428
    • /
    • 2004
  • A wind turbine system converts wind energy into electric energy, the system operated under normal environmental conditions. In case of particular turbulent wind flow such as typhoon, hurricane etc, the control of a blade used to a yaw control and a pitch control method. A small wind turbine has not a speed control system to only a manual tail safety brake. This paper shows a automatic tail safety brake controller based on feedback control using wind velocity. The controller composed of wired motor, relay system, steel wired motor him down a perpendicular to wind flow and then the blade speed reduced high to zero. The operation of automatic tail safety controller verified by manual test.

  • PDF

PIV measurement of roof corner vortices

  • Kim, Kyung Chun;Ji, Ho Seong;Seong, Seung Hak
    • Wind and Structures
    • /
    • v.4 no.5
    • /
    • pp.441-454
    • /
    • 2001
  • Conical vortices on roof corners of a prismatic low-rise building have been investigated by using the PIV(Particle Image Velocimetry) technique. The Reynolds number based on the free stream velocity and model height was $5.3{\times}10^3$. Mean and instantaneous vector fields for velocity, vorticity, and turbulent kinetic energy were measured at two vertical planes and for two different flow angles of $30^{\circ}$ and $45^{\circ}$. The measurements provided a clear view of the complex flow structures on roof corners such as a pair of counter rotating conical vortices, secondary vortices, and tertiary vortices. They also enabled accurate and easy measurement of the size of vortices. Additionally, we could easily locate the centers of the vortices from the ensemble averaged velocity fields. It was observed that the flow angle of a $30^{\circ}$ produces a higher level of vorticity and turbulent kinetic energy in one of the pair of vortices than does the $45^{\circ}$ flow angle.

Wind Tunnel Study on Flow Characteristics around KRISO 300K VLCC Double-body Model (KRISO 300K VLCC 이중모형선의 유동특성에 대한 풍동실험 연구)

  • Hak-Rok Kim;Sang-Joon Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.36 no.3
    • /
    • pp.15-21
    • /
    • 1999
  • The flow characteristics around KRISO 300K VLCC double-body model have been experimentally investigated in a closed-type subsonic wind tunnel. The local mean velocity and turbulence statistics including turbulent intensity. Reynolds shear stress and turbulent kinetic energy were measured using a x-type hot-wire probe. The measurements were carried out at several transverse stations of the stern and near wake regions. The surface flow was visualized using on oil-film technique to see the flow pattern qualitatively. The flow in the stern and near wake region revealed complicated three-dimensional flow characteristics. The VLCC model shows a hook-shaped wake structure behind the propeller boss in the main longitudinal vortex region. The thin boundary layer at midship was increased gradually in thickness over the stern and evolved into a full three-dimensional turbulent wake.

  • PDF