• 제목/요약/키워드: turbulent wind

검색결과 417건 처리시간 0.026초

Wind loads on a solar array

  • Kopp, G.A.;Surry, D.;Chen, K.
    • Wind and Structures
    • /
    • 제5권5호
    • /
    • pp.393-406
    • /
    • 2002
  • Aerodynamic pressures and forces were measured on a model of a solar panel containing six slender, parallel modules. Of particular importance to system design is the aerodynamically induced torque. The peak system torque was generally observed to occur at approach wind angles near the diagonals of the panel ($45^{\circ}$, $135^{\circ}$, $225^{\circ}$ and $315^{\circ}$) although large loads also occurred at $270^{\circ}$, where wind is in the plane of the panel, perpendicular to the individual modules. In this case, there was strong vortex shedding from the in-line modules, due to the observation that the module spacing was near the critical value for wake buffeting. The largest loads, however, occurred at a wind angle where there was limited vortex shedding ($330^{\circ}$). In this case, the bulk of the fluctuating torque came from turbulent velocity fluctuations, which acted in a quasi-steady sense, in the oncoming flow. A simple, quasi-steady, model for determining the peak system torque coefficient was developed.

Empirical formulations for evaluation of across-wind dynamic loads on rectangular tall buildings

  • Ha, Young-Cheol
    • Wind and Structures
    • /
    • 제16권6호
    • /
    • pp.603-616
    • /
    • 2013
  • This study is aimed at formulating an empirical equation for the across-wind fluctuating moment and spectral density coefficient, which are needed to estimate the across-wind dynamic responses of tall buildings, as a function of the side ratios of buildings. In order to estimate an empirical formula, wind tunnel tests were conducted on aero-elastic models of the rectangular prisms with various aspect and side ratios in turbulent boundary layer flows. In this paper, criteria for the across-wind fluctuating moment and spectral density are briefly discussed and the results are analyzed mainly as a function of the side ratios of the buildings. Finally, empirical formulas for the across-wind fluctuating moment coefficient and spectral density coefficient according to variation of the aspect ratio are proposed.

Laboratory measurements of the drag coefficient over a fixed shoaling hurricane wave train

  • Zachry, Brian C.;Letchford, Chris W.;Zuo, Delong;Kennedy, Andrew B.
    • Wind and Structures
    • /
    • 제16권2호
    • /
    • pp.193-211
    • /
    • 2013
  • This paper presents results from a wind tunnel study that examined the drag coefficient and wind flow over an asymmetric wave train immersed in turbulent boundary layer flow. The modeled wavy surface consisted of eight replicas of a statistically-valid hurricane-generated wave, located near the coast in the shoaling wave region. For an aerodynamically rough model surface, the air flow remained attached and a pronounced speed-up region was evident over the wave crest. A wavelength-averaged drag coefficient was determined using the wind profile method, common to both field and laboratory settings. It was found that the drag coefficient was approximately 50% higher than values obtained in deep water hurricane conditions. This study suggests that nearshore wave drag is markedly higher than over deep water waves of similar size, and provides the groundwork for assessing the impact of nearshore wave conditions on storm surge modeling and coastal wind engineering.

Estimation of peak wind response of building using regression analysis

  • Payan-Serrano, Omar;Bojorquez, Eden;Reyes-Salazar, Alfredo;Ruiz-Garcia, Jorge
    • Wind and Structures
    • /
    • 제29권2호
    • /
    • pp.129-137
    • /
    • 2019
  • The maximum along-wind displacement of a considerable amount of building under simulated wind loads is computed with the aim to produce a simple prediction model using multiple regression analysis with variables transformation. The Shinozuka and Newmark methods are used to simulate the turbulent wind and to calculate the dynamic response, respectively. In order to evaluate the prediction performance of the regression model with longer degree of determination, two complex structural models were analyzed dynamically. In addition, the prediction model proposed is used to estimate and compare the maximum response of two test buildings studied with wind loads by other authors. Finally, it was proved that the prediction model is reliable to estimate the maximum displacements of structures subjected to the wind loads.

Gun식 가스버너의 연소실내 난류 선회유동장 고찰 (Investigation on the Turbulent Swirling Flow Field within the Combustion Chamber of a Gun-Type Gas Burner)

  • 김장권
    • 대한기계학회논문집B
    • /
    • 제33권9호
    • /
    • pp.666-673
    • /
    • 2009
  • The turbulent swirling flow field characteristics of a gun-type gas burner with a combustion chamber were investigated under the cold flow condition. The velocities and turbulent quantities were measured by hot-wire anemometer system with an X-type probe. The turbulent swirling flow field in the edge of a jet seems to cause a recirculation flow from downstream to upstream due to the unbalance of static pressure between a main jet flow and a chamber wall. Moreover, because the recirculation flow seems to expand the main jet flow to the radial and to shorten it to the axial, the turbulent swirling flow field with a chamber increases a radial momentum but decreases an axial as compared with the case without a chamber from the range of about X/R=1.5. As a result, these phenomena can be seen through all mean velocities, turbulent kinetic energy and turbulent shear stresses. All physical quantities obtained around the slits, however, show the similar magnitude and profiles as the case without a chamber within the range of about X/R=1.0.

열성층유동장에 놓인 원주후류의 특성에 대한 연구 (3) -선형열원으로부터의 난류확산- (Study on the Characteristics of Cylinder Wake Placed in Thermally Stratified Flow(III) - Turbulent Dispersion from a Line Heat Source-)

  • 김경천;정양범
    • 대한기계학회논문집
    • /
    • 제19권5호
    • /
    • pp.1300-1307
    • /
    • 1995
  • The effect of thermal stratification on the turbulent dispersion from a fine cylindrical heat source was experimentally examined in a wind tunnel with and without a strong temperature gradient. A 0.5 mm dia. nichrome wire was used as a line heat source. Turbulent intensities, r.m.s. value of temperature and convective heat fluxes were measured by using a hot-wire and cold-wire combination probe. The results show that the peack value and the spread of the vertical turbulent intensity for the stratified case are far lower than those in the neutral case, which indicates that the stable temperature gradient suppresses the vertical velocity component. All of the third order moments including heat fluxes measured in the stable condition have very small values than those of the neutral case. This nature suggests that the decrease of scalar fluctuations in the stably stratified flow is mainly due to the suppression ofthe turbulent diffusion processes by the stable stratification. A simple gradient model with a composite timescale which has a simple weighted algebraic mean between dynamic and thermal time scale yields reasonably good numerical values in comparison with the experimental data.

Improvement in Active Power Control Methods for a Wind Farm Based on Modified Wind Turbine Control in Danish Grid Codes

  • Sim, JunBo;Song, Il-Keun;Lee, Yongseung;Lee, Hak-Ju;Choi, Yun-Hyuk
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권4호
    • /
    • pp.1438-1449
    • /
    • 2018
  • The importance of power system stability has been emphasized with an increase of wind energy penetration in the power system. Accordingly, the guarantee on various control capabilities, including active and reactive power control of wind farms, was regarded as the most important aspect for the connection to the grid. To control the wind farm active power, the wind farm controller was introduced. The wind farm controller decides the power set points for each wind turbine generating unit and each wind turbine generating unit controls its power according to the set points from the wind farm controller. Therefore, co-relationship between wind farm controller and wind turbine controllers are significantly important. This paper proposes some control methods of wind farm active power control based on modified wind turbine control for power system stability and structures to connect wind turbine controllers to wind farm controller. Besides, this paper contributes to development of control algorithm considering not only electrical components but also mechanical components. The proposed contributions were verified by full simulation including power electronics and turbulent wind speed. The scenario refers to the active power control regulations of the Eltra and Elkraft system in Denmark.

콘형 배플판을 갖는 Gun식 가스버너의 난류유동장에 대한 슬릿과 스월베인의 역할 (The Role of Slits and Swirl Vanes on the Turbulent Flow Fields in Gun-Type Gas Burner with a Cone-Type Baffle Plate)

  • 김장권;정규조
    • 대한기계학회논문집B
    • /
    • 제27권4호
    • /
    • pp.466-475
    • /
    • 2003
  • The gun-type gas burner adopted in this study is generally composed of eight slits and swirl vanes. Thus, this paper is studied to investigate the effect of slits and swirl vanes on the turbulent flow fields in the horizontal plane of gas swirl burner with a cone type baffle plate measured by using X-probe from hot-wire anemometer system. This experiment is carried out at flow rate 450 $\ell$/min in the test section of subsonic wind tunnel. The axial mean velocity component in the case of burner model with only swirl vanes shows the characteristic that spreads more remarkably toward the radial direction than axial one, it does, however, directly opposite tendency in the case of burner model with only slits. Consequently. both slits and swirl vanes composing of gun-type gas burner play an important role in decrease of the speed near slits and increase of the flow speed in the central part of a burner because the biggest speed spurted from slits encircles rotational flow by swirl vanes and it drives main flow toward the axial direction. Moreover, the turbulent intensities and turbulent kinetic energy of gun-type gas burner are distributed with a fairly bigger size within X/R<0.6410 than burner models which have only slits or swirl vanes because the rotational flow by swirl vanes and the fast jet flow by slits increase flow mixing, diffusion, and mean velocity gradient effectively.

비균질 도시 지표에서 측정된 에디 공분산 난류 플럭스의 불확실성 분석: 좌표계 편향 영향 (Uncertainty Analysis of the Eddy-Covariance Turbulent Fluxes Measured over a Heterogeneous Urban Area: A Coordinate Tilt Impact)

  • 이두일;이재형;이상현
    • 대기
    • /
    • 제26권3호
    • /
    • pp.473-482
    • /
    • 2016
  • An accurate determination of turbulent fluxes over an urban area is a challenging task due to its morphological diversity and associated flow complexity. In this study, an eddy covariance (EC) method is applied over a highly heterogeneous urban area in a small city (Gongju), South Korea to investigate the quantitative influence of 'coordinate tilt' in determining the turbulent fluxes of sensible heat, latent heat, momentum, and carbon dioxide mass. Two widely-used coordinate transform methods are adopted and applied to eight directional sections centered on the site to analyze a 1-year period EC measurement obtained from the urban site: double rotation (DR) and planar fit (PF) transform. The results show that mean streamline planes determined by the PF method are distinguished from the sections, representing morphological heterogeneity of the site. The sectional pitch angles determined by the DR method also compare well with those in the PF method. Both the PF and DR methods show large variabilities in the determined streamline planes at each directional section, implying that flow patterns may form in a complicate way due to the surface heterogeneity. Resulting relative differences of the turbulent fluxes, defined by $(F_{DR}-F_{PF})/F_{DR}$, are found on average +13% in sensible heat flux, +21% in latent heat flux, +37% in momentum flux, and +26% in carbon dioxide mass flux, which are larger values than those reported previously for fairly homogeneous natural sites. The fractional differences depend significantly on wind direction, showing larger differences in northerly winds at the measurement site. It is also found that the relative fractional differences are negatively correlated with the mean wind speed at both stable/unstable atmospheric conditions. These results imply that EC turbulent fluxes determined over heterogeneous urban areas should be carefully interpreted with considering the uncertainty due to 'coordinate tilt' effect in their applications.

콘형 가스버너의 난류유동장에 대한 슬릿과 스월베인의 역할 (The Role of Slits and Swirl Vanes on the Turbulent Flow Fields in Cone Type Gas Burner)

  • 김장권;정규조
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.341-346
    • /
    • 2001
  • The gun-type gas burner adopted in this study is generally composed of some slits and swirl vanes. Therefore, this paper is studied to investigate the effect of slits and swirl vanes on the turbulent flow fields in the horizontal plane of gas swirl burner with a cone type baffle plate measured by using X-probe from hot-wire anemometer system. This experiment is carried out at flow rate $450\;{\ell}/min$, which is equivalent to the combustion air flow rate necessary for heat release 15,000 kcal/hr in gas furnace, in the test section of subsonic wind tunnel. When the burner has only swirl vanes, the axial mean velocity component shows the characteristic that spreads more remarkably toward radial direction than axial one, but when it has only slits, that is developed spreading more toward axial direction than radial one. Therefore, because the biggest speed is spurted in slits and it derive main flow toward axial direction encircling rotational flow that comes out from swirl vane that is situated on the inside of slits, both slits and swirl vanes composing of cone type gas burner act role that decreases the speed near slits and increases the flow speed in the central part of a burner. Moreover, because rotational flow by swirl vanes and fast jet flow by slits increase turbulent intensities effectively coexisting, the turbulent kinetic energy is distributed with a bigger size fairly near slits than burner models which have only slit or swirl vanes within X/R<0.6410.

  • PDF