• 제목/요약/키워드: turbulent velocity intensity

검색결과 266건 처리시간 0.019초

원형 이중관 내의 선회유동에 관한 실험적 연구 (An Experimental Study on Swirling flow in a Cylindrical Annuli)

  • 장태현;이권수;이해수;강창수
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2002년도 추계학술대회 논문집
    • /
    • pp.89-95
    • /
    • 2002
  • An experimental investigation was performed to study the characteristics of turbulent swirling flow in an axisymmetric annuli. The swirl angle measurements were performed by flow visualization technique using smoke and dye liquid. Using the Particle Image Velocimetry method, this study found the time-mean velocity distribution and turbulent intensity with swirl for Re = 20,000, 30,000, 50,000, and 70,000 along longitudinal sections and the results appear to be physically reasonable.

  • PDF

원형단면을 갖는 90$^{\circ}$ 곡관내의 선회유동에 관한 실험적 연구 (An Experimental Study on Swirling Flow in a 90 Degree Circular Section Tube)

  • 장태현;이해수
    • 한국가시화정보학회지
    • /
    • 제1권1호
    • /
    • pp.82-91
    • /
    • 2003
  • The study of swirl flow has been of technical and scientific interest because it has an internal recirculation field and its tangential velocity is related to the curvature of the streamline. The fluid flow for ducts or elbows of an internal engine has been much studied through numerical methods and experiments, but studies about swirl flow has been insufficient. Using the PIV (Particle Image Velocimetry) method, this study found the time-mean velocity distribution, time-mean turbulent intensity, with swirl and without swirl flow for Re=10,000, 15,000, 20,000, and 25,000 along longitudinal sections and the results appear to be physically reasonable. In addition, axial velocity distribution is compared with that of Jeong's, Kodadadi's and Murakami's. It was found that the highest velocity of swirl and non-swirl flow occurs in the opposite position at the center of a round tube, $\phi$=45$^{\circ}$

  • PDF

Experimental Study of Flow Fields around a Perforated Breakwater

  • Ariyarathne, H.A. Kusalika S.;Chang, Kuang-An;Lee, Jong-In;Ryu, Yong-Uk
    • International Journal of Ocean System Engineering
    • /
    • 제2권1호
    • /
    • pp.50-56
    • /
    • 2012
  • This study investigates flow fields and energy dissipation due to regular wave interaction with a perforated vertical breakwater, through velocity data measurement in a two-dimensional wave tank. As the waves propagate through the perforated breakwater, the incoming wave energy is reflected back to the ocean, dissipated due to very turbulent flows near the perforations and inside the chamber, and transmitted through the perforations of the breakwater. This transmitted energy is further reduced due to the presence of the perforated back wall. Hence most of the energy is either reflected or dissipated in the vicinity of the structure, and only a small amount of the incoming wave energy is transmitted through the structure. In this study, particle image velocimetry (PIV) technique was employed to measure two-dimensional instantaneous velocity fields in the vicinity of the structure. Measured velocity data was treated statistically, and used to calculate mean flow fields, turbulence intensity and turbulent kinetic energy. For investigation of the flow pattern, time-averaged mean velocity fields were examined, and discussed using the cross-sections through slot and wall for comparison. Flow fields were obtained and compared for various cases with different regular wave conditions. In addition, turbulent kinetic energy was estimated as an approach to understand energy dissipation near the perforated breakwater. The turbulent kinetic energy was distributed against wave height and wave period to see the dependence on wave conditions.

다중 길이척도 난류운동에너지 생성율 모형을 이용한 가솔린 기관의 성능 시뮬레이션 (Performance Simulation of a Gasoline Engine Using Multi-Length-Scale Production Rate Model)

  • 이홍국;최영돈
    • 한국자동차공학회논문집
    • /
    • 제7권7호
    • /
    • pp.1-14
    • /
    • 1999
  • In the present study, the flame factor which primarily influence the simulation accuracy of the combustion process in a gasoline engine was modeled as a nonlinear function of turbulent intensity to laminar flame speed ratio. Multi-length-scale production rate model for turbulent kinetic energy equation was introduced to consider the different length scales of the swirling and tumbling motions in cylinder on the production rte of turbulent kinetic energy. By7 introducing the multi-length-scale production rate model for the turbulent kinetic energy equation, the predictions of turbulent burning velocity , cylinder pressure, mass burning rate and engine performance of a gasoline engine can much be improved.

  • PDF

위상평균 PTV 기법을 이용한 프로펠러 후류의 속도장 측정 (Velocity Field Measurements of Propeller Wake Using a Phase-averaged PTV Technique)

  • 백부근;이상준
    • 대한조선학회논문집
    • /
    • 제39권3호
    • /
    • pp.41-47
    • /
    • 2002
  • 선박용 프로펠러 후류의 유동 특성을 적응형 하이브리드 2-frame PTV(Particle Tracking Velocimetry)기법을 적용하여 실험적으로 해석하였다. 프로펠러 위상각에 대해 위상평균하여 하류로 나아감에 따른 후류 유동의 발달과정을 연구하였으며, 주 유동 방향으로 날개의 뒷날로부터 프로펠러 직경만큼의 거리까지를 측정하였다. 하나의 날개에 대해 4개의 다른 위상각 각각에서 얻은 위상평균 속도장 결과는 프로펠러 날개의 압력 차이로 인해 발생하는 주기적인 날개끝 보오텍스가 하류로 이동해 나감을 보여주고 있다. 또한, 프로펠러 날개 표면을 따라 발달하는 경계층에 기인한 점성 후류는 축방향 속도성분의 결손을 가진다. 프로펠러 날개 뒷날에서 발생하는 후연 보오텍스는 하류로 나아감에 따라 수축되며 점성 소산으로 인해 그 세기 및 크기는 점차 작아졌다.

접선식 배치로내의 선회유동장에 관한 실험적 연구 (An Experimental Study on the Swirling Flow Field in the Tangentially Fired Furnace)

  • 윤순현;김경천;김대성
    • 대한기계학회논문집
    • /
    • 제19권11호
    • /
    • pp.3003-3013
    • /
    • 1995
  • The characteristics of the flow field in the tangentially fired furnace are presented. Experiments are conducted in the simplified cold type isothermal flow model. In the measurement of flow field, a hot wire anemometer is used. The hot wire was calibrated by lookup table method. The mean velocity field and turbulence characteristics are showed with changing the nozzle angle. In the center of the model, the low speed, unstable flow region is formed. The size and position of these regions are varied with changing the nozzle angle. It can be used as fundamental data in the design of the large furnace. From the experimental results, various turbulent characteristics of swirling flow field is obtained. And the entrainment mechanism of the jet flow field is described from the distribution of the skewness and the flatness. It can be used the raw data of approximate calculation and turbulent modelling.

고해상 3차원 입자영상유속계 개발과 구 유동장 정밀해석 적용연구 (Development of High-Definition 3D-PTV and its Application to High-Precision Measurements of a Sphere Wake)

  • 황태규;도덕희
    • 설비공학논문집
    • /
    • 제17권12호
    • /
    • pp.1161-1168
    • /
    • 2005
  • A Multi-Sectional 3D-PTV algorithm was developed to reduce the calculation time of the conventional GA-3D-PTV. The hardware system of the constructed 3D-PTV system consists of two high-speed cameras ($1,024\times1,018$ pixels, 60 fps), a metal halogen lamp (400W) and a host computer. The sphere(D=30mm) is suspended in a circulating water channel $(300mm\times300mm\times1,200m)$ and Reynolds number is 1,130. About 5,000 instantaneous three-dimensional velocity vectors have been obtained by the constructed 3D-PTV system. Turbulent properties such as turbulent intensity, Reynolds stress and turbulent kinetic energy were obtained. An eigenvalue analysis was carried out using the obtained instantaneous 3D velocity vectors to get the topological relations of the asymptotically stable critical point. Two structured shells, inner shell and outer shell, were found in the sphere wake and their motions were clarified by the measured data.

슬릿을 통한 주기적 국소 가진이 난류경계층에 미치는 영향 (I) - 정상 가진과의 비교 - (Effects of Priodic Blowing Through a Spnnwise Slot on a Turbulent Boundary Layer (I) - Comparison with Steady Blowing -)

  • 김경연;성형진
    • 대한기계학회논문집B
    • /
    • 제28권1호
    • /
    • pp.31-40
    • /
    • 2004
  • Direct numerical simulations were performed to analyze the effects of time-periodical blowing through a spanwise slot on a turbulent boundary layer. The blowing velocity was varied in a cyclic manner from 0 to 2A$^{+}$(A$^{+}$ =0.25, 0.50 and 1.00) at a fixed blowing frequency of f$^{+}$=0.017. The effect of steady blowing (SB) was also examined, and the SB results were compared with those for periodic blowing (PB). PB reduced the skin friction near the slot, although to a slightly lesser extent than SB. PB was found to generate a spanwise vortical structure in the downstream of the slot. This vortex generates a reverse flow near the wall, thereby reducing the wall shear stress. The wall-normal and spanwise turbulence intensities under PB are increased as compared to those under SB, whereas the streamwise turbulent intensity under PB is weaker than that under SB. PB enhances more energy redistribution than SB. The periodic response of the streamwise turbulence intensity to PB is propagated to a lesser extent than that of the other components of the turbulence intensities and the Reynolds shear stress.

Stereoscopic PIV 기법을 이용한 선박용 프로펠러 후류의 3차원 속도장 측정 (Three Component Velocity Field Measurements of Turbulent Wake behind a Marine Propeller Using a Stereoscopic PIV Technique)

  • 이상준;백부근;윤정환
    • 대한기계학회논문집B
    • /
    • 제27권12호
    • /
    • pp.1716-1723
    • /
    • 2003
  • A stereoscopic PIV(Particle Image Velocimetry) technique was employed to measure the 3 dimensional flow structure of turbulent wake behind a marine propeller with 5 blades. The out-of-plane velocity component was determined using two CCD cameras with the angular displacement configuration. Four hundred instantaneous velocity fields were measured for each of four different blade phases and ensemble averaged to investigate the spatial evolution of the propeller wake in the near-wake region from the trailing edge to one propeller diameter(D) downstream. The phase-averaged velocity fields show the potential wake and the viscous wake developed along the blade surfaces. Tip vortices were generated periodically and the slipstream contraction occurs in the near-wake region. The out-of-plane velocity component and strain rate have large values at the locations of tip and trailing vortices. As the flow goes downstream, the turbulence intensity, the strength of tip vortices and the magnitude of out-of-plane velocity component at trailing vortices are decreased due to viscous dissipation, turbulence diffusion and blade-to-blade interaction.

열성층유동장에 놓인 원주후류의 특성에 대한 연구 (4) -가열량의 변화에 따른 원주후류에 대하여- (A Study on the Characteristics of Cylinder Wake Placed in Thermally Stratified Flow (IV) -On the Cylinder Wake with Various Heating Rates-)

  • 김경천;정양범
    • 대한기계학회논문집
    • /
    • 제19권5호
    • /
    • pp.1340-1350
    • /
    • 1995
  • The effects of thermal stratification on the flow past a heated circular cylinder with various heating rates were examined in a wind tunnel. Turbulent intensities, r.m.s.values of temperature and turbulent convective heat flux distributions in the cylinder wakes with and without thermal stratification were measured by using a hot-wire and cold-wire combination probe. The phase averaging method was also used to estimate coherent contributions to the turbulent flow field in the near wake. The results show that the scalar mixing process is very different according to the mean temperature fields especially in the upper part of the wake. The coherent structure of the temperature field makes a large contribution to the time mean value like velocity components. However, the coherency of the temperature fluctuation is very different with the change of mean temperature fields, though the velocity coherent motions are quite similar in all experimental conditions.