• Title/Summary/Keyword: turbulent lubrication

Search Result 22, Processing Time 0.015 seconds

Vibration Analysis of Rotor System for Rotary Compressor Considering Hydrodynamic Force between Motor Rotor and Stator (전동기 공극부 냉매의 유막력을 고려한 로터리 압축기용 회전축계의 진동해석)

  • Kim, Yong-Han;Yang, Bo-Suk;Ahn, Byoung-Ha;Lee, Jang-Woo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1058-1064
    • /
    • 2000
  • The analysis of dynamic behaviour of rotor system for the rolling piston type rotary compressor considering hydrodynamic force between motor rotor and stator is presented. In addition to considering other dynamic, loads such as large unbalance forces, gas force and bearing force, we consider the hydrodynamic force induced by the compressed fluid flow through the air gap between motor rotor and stator, and improve the analysis of vibration in rotary compressor. The Childs' method which based on Bulk-now and Hirs' turbulent lubrication model is used to calculate the rotordynamic coefficients due to hydrodynamic force of annular clearance in motor air gap.

  • PDF

A Numerical Analysis on Transient Temperatures of Fuel and Oil in a Military Aircraft (항공기내 연료 및 오일온도 변화에 대한 수치해석적 연구)

  • Kim, Yeong-Jun;Kim, Chang-Nyeong;Kim, Cheol-In
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.8
    • /
    • pp.1153-1163
    • /
    • 2002
  • A transient analysis on temperatures of fuel and oil in hydraulic and lubrication systems in an aircraft was studied using the finite difference method. Numerical calculation was performed by an explicit method with modified Dufort-Frankel scheme. Among various missions, air superiority mission was considered as a mission model with 20% hot day ambient condition in subsonic region. The ambience of the aircraft was assumed as turbulent flow. Convective heat transfer coefficient were used in calculating heat transfer between the aircraft surface and the ambience. For an aircraft on the ground, an empirical equation represented as a function of free-stream air velocity was used. And the heat transfer coefficient for flat plate turbulent flow suggested by Eckert was employed for in-flight phases. The governing equations used in this analysis are the mass and energy conservation equations on fuel and oils. Here, analysis of fuel and oil temperature in the engine was not carried out. As a result of this analysis, the ground operation phase has shown the highest temperature and the largest rate of temperature increase among overall mission phases. Also, it is shown that fuel flow rate through fuel/oil heat exchanger plays an important role in temperature change of fuel and oil. This analysis could be an important part of studies to ensure thermal stability of the aircraft and can be applicable to thermal design of the aircraft fuel system.