• Title/Summary/Keyword: turbulent intensities

검색결과 107건 처리시간 0.023초

실시간 연소제어를 위한 화염 내 라디칼 계측기법 연구 (An Experimental Study on the Measurement of Radicals in Flame for Real Time Combustion Control)

  • 신명철;김세원;류태우;권승진
    • 한국연소학회지
    • /
    • 제11권3호
    • /
    • pp.18-25
    • /
    • 2006
  • The present studying is aimed to establish the relationship between flame chemiluminescence$(OH^*,\;CH^*,\;C_2^*)$ intensities and combustion conditions such as $NO_x$ emission characteristics. Measurements are made for $OH^*,\;CH^*,\;C_2^*$ radicals in gas & light oil diffusion flames. At turbulent nonpremixed combustion mode, the equivalence ratio is varied. The optical emissions were measured by photomultiplier(PMT) using optical band pass filter and spectrometer system. The experimental results showed that the ratio of radicals and $NO_x$ emission characteristics have exponential correlations and equivalence ratio characteristics have linear correlations at this experimental conditions.

  • PDF

난류 유동장 내 구형 액적의 연소특성 (Combustion Characteristics of Spherical Droplet in Turbulent Flow Field)

  • 조종표;김호영;윤석구
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2005년도 제31회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.132-137
    • /
    • 2005
  • The burning characteristics of interacting spherical droplet in a turbulent flow are numerically investigated. The transient combustion of 3-dimensionally arranged droplets, both the fixed streamwise droplet distances of 3 radii and 10 radii and different turbulence intensities, is studied. The results obtained from the present numerical analysis show that droplet vaporization rate for heptane droplet is insensitive to turbulence intensity, and that the transient flame configuration and retardation of droplet surface temperature augmentation with streamwise droplet spacing substantially influence vaporization process of interacting droplets. Single flame mode in which individual flames are merged into single flame, with decreasing streamwise droplet spacing, becomes faster. Therefore, vaporization rate of the second droplet with decreasing streamwise droplet spacing decreases remarkably with flame movement.

  • PDF

난류 이중동심관 유동에 미치는 표면거칠기 효과 (Effect of Surface Roughness on Turbulent Concentric Annular Flows)

  • 김경천;안수환;정양범
    • 대한기계학회논문집
    • /
    • 제19권7호
    • /
    • pp.1749-1757
    • /
    • 1995
  • The structure of turbulence of fully developed flow through three concentric annuli with both rough inner and outer walls was investigated experimentally for Reynolds number range Re=15000-93000. Turbulence intensities were measured in three (u, v, w) directions, and turbulence shear stresses in annuli of radius ratios .alpha.= 0.26, 0.4 and 0.56, respectively. The result showed that the structure of turbulence for these asymmetric flows was not the same as that for the annulus with smooth walls. The velocity fluctuations of all three components (u, v, and w-directions) showed little discernible variation with Reynolds numbers, but became apparent with the influence of radius ratio (.alpha.) The experimental results for an annulus with the roughened outer wall and a smooth annulus were shown in the figures as a reference. The eddy diffusivities and friction factors were also presented and discussed.

난류선회제트 계산에 관한 난류모델 비교 연구 (Comparison of Various Turbulence Models for the Calculation of Turbulent Swirling Jets)

  • 최동규;최도형;김문언
    • 대한기계학회논문집
    • /
    • 제14권2호
    • /
    • pp.440-452
    • /
    • 1990
  • Comprehensive numberical computations have been made for four turbulent swirling jets with and without recirculation to critically evaluate the accuracy and universality of several exising turbulence models as well as of the modified k-.epsilon. model proposed in the present study. A numerical scheme based on the full Navier-Stoke equations ha been developed and used for this purpose. Inlet conditions are given by experiments, whenever possible, to minimize the error due to incorrect initial conditions. The standard k-.epsilon. model performs well for the strongly swirling jets with recirculation while it underpredicts the influence of swirl for weakly swirling jets. Rodi's swirl correction and algebraic stress model do not exhibit universality for the swirling jets. The present modified k-.epsilon. model derived from algebraic stress model accounts for anisotropy and streamline curvature effect on turbulence. This model performs consistently better than others for all cases. It may be because these flows have a strong dependence of stresses on the local strain of the mean flow. The predictions of truculence intensities indicate that this model successfully reflect the curvature effect in swirling jets, i.e. the stabilizing and destabilizing effects of swirl on turbulence transport.

PIV계측을 이용한 난류유동의 증진을 위한 초음파 적용 (Ultrasonic Applications for the Enhancement of Turbulence Flow by using the PIV Measurement)

  • 박영호;최우창;구자훈;송민근;주은선
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집B
    • /
    • pp.633-638
    • /
    • 2000
  • Ultrasonic applications for the enhancement of turbulence flow by using the PIV measurement were carried out according to the angle of the ultrasonic oscillator, materials of the reflector and each section when ultrasonic is reflected several times. Angles of the ultrasonic oscillator such as $30^{\circ},\;45^{\circ},\;60^{\circ},\;90^{\circ},\;120^{\circ},\;135^{\circ}$ and $150^{\circ}$ were selected, and turbulent intensities were compared at Reynolds No. 2,000 and 4,000. Materials of the reflector such as wood, acryl, iron and glass were selected, and time mean velocity vector and turbulent intensity were compared at Reynolds No. 4,000. The zone which was observed was selected from first section to fourth section when ultrasonic was reflected several times. Every data such as time mean velocity vector and time mean turbulent intensity which was obtained by PIV measurement was examined, compared and discussed at Reynolds No. 2,000 and 4,000 to know the degree of turbulence enhancement in each case.

  • PDF

수평 2상유동에서 마찰저항감소에 관한 연구 (A study on the drag reduction in a horizontal two phase flow)

  • 차경옥;김재근
    • 대한기계학회논문집B
    • /
    • 제20권4호
    • /
    • pp.1472-1480
    • /
    • 1996
  • The phenomena of drag reduction using small quantities of a linear macromolecules has attracted the attention of experimental investigations. It is well known that drag reduction in single phase liquid flow is affected by polymer materials, molecular weight, polymer concentration, pipe diameter and flow velocity. But the research on drag reduction in two phase flow has not intensively investigated. Drag reduction can be applied to phase change system such as chemical reactor, pool and boiling flow, and to flow with cavitation which occurs pump impellers. The purpose of the present work is to evaluate the drag reduction by measuring pressure drop, mean liquid velocity, and turbulent intensity and determine the effects of polymer additives on drag reduction in horizontal two phase flow. Experimental results show higher drag reduction using co-polymer comparing with using polyacrylamide. Mean liquid velocities increase as adding more polymer, and turbulent intensities decrease as the distance for the wall in inversed.

Measurement of Turbulent Intensity Distributions of a Cylinder Wake

  • Doh, Deog Hee;Cho, Gyeong Rae;Moon, Kyeong Rok;Cho, Yong Beom
    • 한국가시화정보학회지
    • /
    • 제11권1호
    • /
    • pp.41-47
    • /
    • 2013
  • Turbulence properties of a cylinder wake (d=10 mm) have been investigated with a new volume PTV algorithm. The measurement system consists of two-high-cameras(1 $k{\times}1$ k), a Nd-Yag laser and a host computer. A fitness function representing three-dimensional coherency has been adopted to sort out spurious vectors. A hybrid fitness function representing the relations between the fitness and the three-dimensional shortest distances constructed by the two collinears of the two cameras has been also adopted. The constructed algorithm has been employed for the measurements of the cylinder wakes. The Reynolds numbers tested in this paper are 360, 540, 720, 900, 1080 and 1260. More than 10,000 instantaneous 3D vectors have been obtained by the constructed system. The volumetric distributions of the turbulence intensities (for u', v', w') indicate that clearly different patterns for all Reynolds numbers and imply that a regular pattern (like a similarity rule) for the turbulent properties exists.

원형동심관내 선회유동의 열전달에 대한 실험적 연구 (Experimental Study on Heat Transfer with Swirling Flow in a Cylindrical Annuli)

  • 장태현;길상철;이권수
    • 한국가시화정보학회지
    • /
    • 제8권1호
    • /
    • pp.53-60
    • /
    • 2010
  • Experimental investigations were conducted to study the characteristics of turbulent swirling flow in an axisymmetric annuli. Swirl angle measurements were performed using a flow visualization technique using smoke and dye liquid for Re=60,00080,000. Using the two-dimensional particle image velocimetry method, we found the time-mean velocity distribution and turbulent intensities in water with swirl for Re=20,000, 30,000, and 40,000 along longitudinal sections. Neutral points occurred for equal axial velocity at y/(R-r)=0.70.75, and the highest axial velocity was recorded near y/(R-r)=0.9. Negative axial velocity was observed near the convex tube along X/(D-d)=3~23. Another experimental study was performed to investigate heat transfer characteristics of turbulent swirling flow in an axisymmetric annuli. Static pressure, and local flow temperature were measured using tangential inlet condition and the friction factors and Nusselt number were calculated for several Reynolds numbers.

수직 상방으로 난류제트의 통계학적 특성에 관한 실험적 연구 (Experimental study of statistical characteristics of turbulent jet discharged vertically upward)

  • 이준식;이택식
    • 대한기계학회논문집
    • /
    • 제5권4호
    • /
    • pp.320-328
    • /
    • 1981
  • Experimental study of a round. free air jet is accomplished using a crossed hot wire probe with a constant temperature hot wire anemometer. Mean velocity Profiles, Reynolds stresses, tubulent intensities, velocity probability densities and correlation functions are measured in the down tream region. These values are calculated and averaged inthe correlation and probability analyzer. The reults are interpreted by the output of te dual beam oscilloscope.

콘형 배플판을 갖는 Gun식 가스버너의 난류유동장에 대한 슬릿과 스월베인의 역할 (The Role of Slits and Swirl Vanes on the Turbulent Flow Fields in Gun-Type Gas Burner with a Cone-Type Baffle Plate)

  • 김장권;정규조
    • 대한기계학회논문집B
    • /
    • 제27권4호
    • /
    • pp.466-475
    • /
    • 2003
  • The gun-type gas burner adopted in this study is generally composed of eight slits and swirl vanes. Thus, this paper is studied to investigate the effect of slits and swirl vanes on the turbulent flow fields in the horizontal plane of gas swirl burner with a cone type baffle plate measured by using X-probe from hot-wire anemometer system. This experiment is carried out at flow rate 450 $\ell$/min in the test section of subsonic wind tunnel. The axial mean velocity component in the case of burner model with only swirl vanes shows the characteristic that spreads more remarkably toward the radial direction than axial one, it does, however, directly opposite tendency in the case of burner model with only slits. Consequently. both slits and swirl vanes composing of gun-type gas burner play an important role in decrease of the speed near slits and increase of the flow speed in the central part of a burner because the biggest speed spurted from slits encircles rotational flow by swirl vanes and it drives main flow toward the axial direction. Moreover, the turbulent intensities and turbulent kinetic energy of gun-type gas burner are distributed with a fairly bigger size within X/R<0.6410 than burner models which have only slits or swirl vanes because the rotational flow by swirl vanes and the fast jet flow by slits increase flow mixing, diffusion, and mean velocity gradient effectively.