• Title/Summary/Keyword: turbulent flow regime

Search Result 74, Processing Time 0.024 seconds

Influence of Vapor Phase Turbulent Stress to the Onset of Slugging in a Horizontal Pipe (기체상의 난류 응력이 수평 유동관 내에서의 Slugging에 미치는 영향에 관한 연구)

  • Park, Jee-Won
    • Nuclear Engineering and Technology
    • /
    • v.27 no.1
    • /
    • pp.45-52
    • /
    • 1995
  • In influence of the vapor phase turbulent stress (i.e., the too-phase Reynolds stress) to the characteristics of two-phase system in a horizontal pipe has been theoretically investigated. The average two-fluid model has been constituted with closure relations for stratified flow in a horizontal pipe. A vapor phase turbulent stress model for the regular interface geometry has been included. It is found that the second order waves propagate in opposite direction with almost the same speed in the moving frame of reference of the liquid phase velocity. Using the well-posedness limit of the two-phase system, the dispersed-stratified How regime boundary has been modeled. Two-phase Froude number has been found to be a convenient parameter in quantifying the onset of slugging as a function of the global void fraction. The influence of the taper phase turbulent stress was found to stabilize the flow stratification.

  • PDF

Effect of Rib Height on Turbulence and Convective Heat Transfer (리브의 높이가 난류 및 열전달특성에 미치는 영향)

  • Nine, Md.J.;Kim, S.J.;Jeong, H.M.;Chung, H.S.;Rahman, M.Sq.
    • Journal of Power System Engineering
    • /
    • v.16 no.6
    • /
    • pp.30-37
    • /
    • 2012
  • Effect of rib heights is found as significant parameter to enhance convective heat transfer performance under laminar and low turbulent regime. Circular ribs with different ribheight to channel height ratios, e/H = 0.05, 0.1, 0.15, are fabricated over the copper substrate respectively in a rectangular duct having 7.5 cross sectional aspect ratio. Only one rib pitch to rib height ratio (P/e = 10) has been chosen for all different height ribs. The result shows that the arithmetic average of turbulence intensity decreases with decreasing roughness height calculated between two ribs under laminar and low turbulent region. It occurs because the area of recirculation and reattachment zone also decreases with decreasing rib height. Optimum thermal enhancement factor is derived by 0.1 rib height to channel height ratio under low turbulent region but 0.15 rib height to channel height ratio gives maximum subjected to laminar flow.

Investigation on the Flowfield Around a Square Cylinder near a Wall (지면에 근접한 정사각주 주변의 유동장 연구)

  • Hwang, Jae-Ho;Park, Young-Whe;Kim, Tae-Yun;Lee, Dong-Ho
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.754-759
    • /
    • 2001
  • This paper presents unsteady computational investigations and wind tunnel tests on the flow field around a square cylinder with a gap between the body and the ground plane. Two-dimensional unsteady, incompressible Navier-Stokes codes are developed for the computation of the viscous turbulent flows. By computing the flow around a square cylinder without ground effect, three two-equation turbulence models are evaluated and the developed code is validated. The results show a good agreement with experimental values and other computational results. Critical gap height at which the formation of Karman vortex streets is interrupted, is demonstrated and another transition regime is pointed out

  • PDF

Simulation of Flame-Vortex Interaction in Thin Laminar Flamelet Regime (얇은 층류 화염편 영역에서 화염과 와동의 산호 작용)

  • Kang, Ji-Hoon;Kwon, Se-Jin
    • 한국연소학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.47-54
    • /
    • 1999
  • A method is developed to include the effect of volume expansion in the description of the flame dynamics using G-equation. Line volume-source is used to represent the effect of the exothermic process of combustion with source strength assigned by the density difference between the burned and the unburned region. The present model provides good agreement with the experimental results by using realistic volume expansion ratio which was not reached in the previous researches. Including volume expansion, the flow predicts the same behavior of measured velocity field qualitatively. The flame propagation in varying flow field due to volume expansion provides a promising way to represent the wrinkled turbulent premixed flames in a numerically efficient manner.

  • PDF

Thermo-Flow Analysis of Offset-Strip Fins according to Blockage Ratio (옵셋 스트립 휜의 막음비에 따른 열 및 유동 분석)

  • Kim, Min-Soo;Yu, Seung-Hwan;Lee, Kwan-Soo
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1084-1089
    • /
    • 2009
  • A numerical study of thermo-flow characteristics is presented to determine correlations of pressure drop and heat transfer for offset-strip fins. As a blockage ratio increased, previous correlations underestimate f values in laminar and turbulent regimes, and overestimate j values in laminar regime. Therefore, new correlations, which are applicable to fins with blockage ratios more than 15%, are presented.

  • PDF

Numerical analysis on heat transfer and pressure drop characteristics in a horizontal channel with various ribs (여러 가지 형태의 립이 설치된 수평채널의 열전달 및 압력강하 특성에 관한 수치해석)

  • Kim, Ji-Hoon;Heo, Joo-Nyoung;Ahn, Sung-Hoo;Lee, Doo-Ho;Son, Young-Seok;Shin, Jee-Young
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.1
    • /
    • pp.40-46
    • /
    • 2013
  • Turbulent flow and heat transfer in a channel with a detached rib array have been simulated. The computations are based on the finite volume method with the SIMPLE algorithm. The forms of ribs considered in this study were rib with rectangular cross section, rib with groove, broken rib, and V-shaped rib. The ribs were deployed transverse or aligned $60^{\circ}$ to the main direction of the flow. Local heat transfer coefficients were obtained at various Reynolds numbers within the turbulent flow regime. Area-averaged data were calculated in order to compare the overall performance of the tested ribbed surfaces and to evaluate the degree of heat transfer enhancement induced by the ribs with respect to the smooth channel. The highest heat transfer occurred for the rib with groove which was aligned $60^{\circ}$ to the main flow direction. Performance factor was decreased with the increase of velocity, and it was found that the best performance factor was obtained in the low velocity region.

Concentration Interaction of Premixed and Triple-layer Flames in Lean Burn with Methane Fuel (희박연소에서 발생하는 메탄의 농도 상호작용과 삼중화염에 대한 연구)

  • Oh, Tae-Kyun;Chung, Suk-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.6
    • /
    • pp.171-178
    • /
    • 2006
  • The performance in the practical combustion system including reciprocating engines and gas turbine combustors is being much governed by turbulent reacting flow that is often analyzed by both a laminar flamelets concept and flame interaction. The characteristics of laminar flame interaction have been investigated numerically to provide basic understanding of wrinkled turbulent flames under concentration interaction resulting from inhomogeneity in fuel-air mixing, especially focused on the transition of flame characteristics such as diffusion flame, partially premixed diffusion flame, and triple-layer flame by the variation in the degree of premixedness. The extinction stretch rates to the premixedness have also been obtained in this paper. The boundary defining the regime of the existence of triple-layer flames as functions of both stretch rate and premixedness has been determined which agrees well with previously reported experiment measuring OH radical concentration peaks based on PLIF.

Numerical investigation of swash-swash interaction driven by double dam-break using OpenFOAM (OpenFOAM을 활용한 포말대 이중 댐-붕괴 수치모형실험)

  • Ok, Juhee;Kim, Yeulwoo;Marie-Pierre C. Delislec
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.10
    • /
    • pp.603-617
    • /
    • 2023
  • This study aims to provide a better understanding of the turbulent flow characteristics in swash zone. A double dam-break method is employed to generate the swash zone flow. Comparing with the conventional single dam-break method, a delay between two gate opening can be controlled to reproduce various interactions between uprush and backwash. For numerical simulations, overInterDyMFoam based on OpenFOAM is adopted. Using overInterDyMFoam, interface between two immiscible fluids having different densities (i.e., air and water phases) can be tracked in a moving mesh with multiple layers. Two-dimensional Reynolds-Averaged Navier-Stokes equations are solved with a standard 𝜅-𝜖 turbulence model for momentum and continuity. Numerical model results are validated with laboratory experiment data for the time series of water depth and streamwise velocity. Turbulent kinetic energy distribution is further investigated to identify the turbulence evolution for each flow regime (i.e., uprush, backwash, and swash-swash interaction).

Power upgrading of WWR-S research reactor using plate-type fuel elements part I: Steady-state thermal-hydraulic analysis (forced convection cooling mode)

  • Alyan, Adel;El-Koliel, Moustafa S.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.7
    • /
    • pp.1417-1428
    • /
    • 2020
  • The design of a nuclear reactor core requires basic thermal-hydraulic information concerning the heat transfer regime at which onset of nucleate boiling (ONB) will occur, the pressure drop and flow rate through the reactor core, the temperature and power distributions in the reactor core, the departure from nucleate boiling (DNB), the condition for onset of flow instability (OFI), in addition to, the critical velocity beyond which the fuel elements will collapse. These values depend on coolant velocity, fuel element geometry, inlet temperature, flow direction and water column above the top of the reactor core. Enough safety margins to ONB, DNB and OFI must-emphasized. A heat transfer package is used for calculating convection heat transfer coefficient in single phase turbulent, transition and laminar regimes. The main objective of this paper is to study the possibility of power upgrading of WWR-S research reactor from 2 to 10 MWth. This study presents a one-dimensional mathematical model (axial direction) for steady-state thermal-hydraulic design and analysis of the upgraded WWR-S reactor in which two types of plate fuel elements are employed. FOR-CONV computer program is developed for the needs of the power upgrading of WWR-S reactor up to 10 MWth.

ANALYSIS ON THE COMPOSITION EFFECT OF FOREST FOR DAMAGE PREVENTION USING CFD (전산유체공학 기법을 활용한 해안 방재림 조성 효과 분석)

  • Park, T.W.;Chang, S.M.;Kim, S.Y.;Lee, Y.J.;Yoon, H.J.
    • Journal of computational fluids engineering
    • /
    • v.18 no.1
    • /
    • pp.69-76
    • /
    • 2013
  • To reduce the damage from the coastal disaster such as typhoon and tsunami, a possible option is the eco-friendly approach to minimize the destruction of ecological system. One of feasible idea is the forest for damage prevention artificially arranged along the beach. To understand a precise physics on the flow before and after the forest, we use a CFD method. In this paper, a three-dimensional numerical model has been constructed based on tree cases in a real forest located at Byin-myeon, Seocheon-gun, Chungnam. The CFD computation using a commercial code COMSOL multiphysics is performed for the distribution of real spatial coordinate of each tree. Through this investigation, the CFD techniques are shown to be applied to the research of forest composition plan. The physics in the regime from laminar to turbulent flow is qualitatively explained, and the obtained data are compared one another quantitatively.