• 제목/요약/키워드: turbulent energy

검색결과 768건 처리시간 0.023초

전기점화 기관의 선회 유동 및 연소에 관한 수치해석 (A Multidimensional Simulation of Swirl Flow and Turbulent Combustion in a Cylinder of SI Engine)

  • 정진은;김응서
    • 대한기계학회논문집
    • /
    • 제16권9호
    • /
    • pp.1744-1759
    • /
    • 1992
  • 본 연구에서는 conchas-spray 코드를 근간으로 하여 기관 실린더 내의 난류유 동과 난류연소 현상을 경제적이고 정확하게 해석할 수 있는 다차원 수치해석 프로그램 을 개발하므로, 전기점화 기관의 흡입, 압축, 연소 과정에 대한 수치해석의 가능성을 제시하고, 스월수 0.0, 0.6, 1.2와 2.4의 파라미터 연구를 통하여 스월이 난류유동 및 난류연소에 미치는 영향을 파악하였다.

Effects of turbulent boundary layer thickness on flow around a low-rise rectangular prism

  • Kim, Kyung Chun;Ji, Ho Seong;Seong, Seung Hak
    • Wind and Structures
    • /
    • 제8권6호
    • /
    • pp.455-467
    • /
    • 2005
  • The effects of upstream velocity profiles on the flow around a low-rise rectangular prism submerged in a turbulent boundary layer have been investigated. Three different boundary layer profiles are generated, which are characterized by boundary layer height, displacement thickness, and momentum thickness. Flow characteristics variations caused by the different layers such as those in turbulent kinetic energy distribution and locations of re-circulating cavities and reattachment points have been precisely measured by using a PIV (Particle Image Velocimetry) technique. Observations were made in a boundary layer wind tunnel at $Re_H$=7900, based on a model height of 40 mm and a free stream velocity of 3 m/s with 15 - 20% turbulence intensity.

회전하는 정사각 직관내 난류유동 (Investigation of Turbulent Flow in Rotating Straight Square Duct)

  • 전건호;최영돈;김동철;최선용;임홍영
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집E
    • /
    • pp.766-771
    • /
    • 2001
  • An experimental study was undertaken to investigate the effect of coriolis force for the turbulent flow at low Reynolds numbers in a rotating straight square duct. The study was carried out using a hot-wire anemometer. The flow Reynolds number based on the hydraulic diameter ranged from 4,000 to 18,000 and Rotation number ranged from 0 to 0.196. At Re=9000, developing turbulent flow was calculated for mean velocity and Reynolds stress. Pressure coefficient and energy dissipation spectrum were also calculated.

  • PDF

거칠기 위치에 따른 이중관 내의 난류유동 (Turbulent flow in annuli depending on the position of roughness)

  • 안수환;김경천
    • 대한기계학회논문집B
    • /
    • 제21권7호
    • /
    • pp.891-899
    • /
    • 1997
  • This paper presents the results of a detailed experimental examination of fully developed asymmetric flows between annular tubes with square-ribbed surface roughness. The main emphasis of the research has been on establishing the turbulence structure, particularly in the central region of the channel where the two dissimilar wall flows interact. Measurements have included profiles of time mean velocities, turbulence intensities, turbulent shear stresses, triple velocity correlations, skewness, and flatness. The region of greatest interaction is characterized by strong diffusional transport of turbulent shear stress and kinetic energy from rough toward the smooth wall region, giving rise to an appreciable separation between the planes of zero shear stresses depending on positions of roughness on the walls.

RNG k-$\varepsilon$ 난류모델을 이용한 유동박리 및 선회를 가지는 난류유동의 예측 (Prediction of Turbulent Flows with Separation and Swirl Using the RNG K-$\varepsilon$ Turbulence Model)

  • 김성구;오군섭;김용모;이창식
    • 한국자동차공학회논문집
    • /
    • 제4권5호
    • /
    • pp.119-129
    • /
    • 1996
  • This study is concerned with the critical evaluation of predicative capability of a k-$\varepsilon$ turbulence model using the Renormalization Group(RNG) theory. The present numerical model for solution of the Navier-Stokes System is based on the modified PISO algorithms. Computations have been performed with the RNG-based K-$\varepsilon$ model for the two-dimensional flow over a backward-facing step, a confined coaxial jet, and a swirling flow in a swirl combustor. Numerical results are compared with experimental data in terms of mean flow velocities, turbulent kinetic energy, and turbulent stresses. Numerical results clearly indicate that the RNG-based K-$\varepsilon$ turbulence model shows a significant improvement over a standard K-$\varepsilon$ model in predicting the turbulent flows with flow separation and swirl.

  • PDF

석탄가스 난류비예혼합 화염장의 해석 (Numerical Analysis for the Detailed Structure of Syngas Turbulent Nonpremixed Flames)

  • 이정원;김창환;김용모
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 춘계학술대회
    • /
    • pp.775-778
    • /
    • 2007
  • The present study numerically investigate the detailed structure of the syngas diffusion flames. In order to realistically represent the turbulence-chemistry interaction, the transient flamelet model has been applied to simulate the combustion processes and $NO_X$ formation in the syngas turbulent nonpremixed flames. The single mixture fraction formulation is extended to account for the effects of the secondary inlet mixture. Computations are the wide range of syngas compositions and oxidizer dilutions. Based on numerical results, the detailed discussion has been made for the effects of syngas composition and oxidizer dilution on the structure of the syngas-air and syngas-oxygen turbulent nonpremixed flames.

  • PDF

쌍롤 연속 주조에서의 난류 유동, 온도 및 응고 예측을 위한 연구 (A Numerical Study of Turbulent Flow, Heat Transfer, and Solidification in Twin-Roil Continuous Casting)

  • 하만영;최봉석
    • 대한기계학회논문집B
    • /
    • 제23권1호
    • /
    • pp.12-24
    • /
    • 1999
  • A computer program has been developed for analyzing the two-dimensional, unsteady conservation equations for transport phenomena in the molten region of twin-roll continuous casting in order to predict the turbulent velocity, temperature fields, and solidification process of the molten steel. The energy equation of the cooling roll is solved simultaneously with the conservation equations of molten steel in order to consider heat transfer through the cooling roll. The results show the velocity, temperature and solidification pattern in the molten region with roll temperature as a function of time. The results for velocity and temperature fields with solidification are compared with those without solidification, giving different thermofluid characteristics in the molten region. We also investigated the effects of revolutional speed of roll, superheat and nozzle geometry on the turbulent flow, temperature and solidification in the molten steel and temperature fields in the cooling roll.

종방향 와동과 난류경계층의 상호작용에 관한 수치해석 (Numerical Simulation on Interactions of Longitudinal Vortices in a Turbulent Boundary Layer)

  • 양장식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제29권6호
    • /
    • pp.637-644
    • /
    • 2005
  • This paper describes the numerical simulation of the interaction between longitudinal vortices ("common flow up") and a 3-D turbulent boundary layer over a flat plate To analyze the common flow up Produced from vortex generators. the flow field behind the vortex generators Is modeled by the information that is available from studies on a half-delta winglet. Also. the Reynolds-averaged Navier-Stokes equation for three-dimensional turbulent flows. together with a two-layer turbulence model to resolve the near-wall flow, is solved by the method of AF-ADI. The computational results predict that the boundary layer is thinned in the regions where the secondary flow is directed toward the wall and thickened where it is directed away from the wall Also. the numerical results. such as Reynolds stresses. turbulent kinetic energy and skin friction characteristics generated from the vortex generators . are reasonably close to the experimental data.

난류박리 및 재부착 유동의 해석을 위한 저레이놀즈수 4-방정식 난류모형의 개발 (A Low-Reynolds-Number 4-Equation Model for Turbulent Separated and Reattaching Flows)

  • 이광훈;성형진
    • 대한기계학회논문집
    • /
    • 제19권8호
    • /
    • pp.2039-2050
    • /
    • 1995
  • The nonlinear low-Reynolds-number k..epsilon. model of park and Sung is extended to predict the turbulent heat transports in separated and reattaching flows. The equations of the temperature variance( $k_{\theta}$ and its dissipation rate(.epsilon.$_{\theta}$ are solved, in concert with the equations of the turbulent kinetic energy(k) and its dissiation rate(.epsilon). In the present model, the near-wall effect and the non-equilibrium effect are fully taken into consideration. The validation of the model is then applied to the turbulent flow behind a backward-facing step and the flow over a blunt body. The predicted results of the present model are compared and evaluated with the relevant experiments.