• Title/Summary/Keyword: turbulent air mixing process

Search Result 21, Processing Time 0.023 seconds

Development and Evaluation of Turbulent Air Mixing Process for Manufacturing Wood Fiber and Thermoplastic Fiber Composites

  • Yoon, Hyoung-Un;Eom, Young-Geun;Park, Jong-Young;Kong, Young-To
    • Journal of the Korean Wood Science and Technology
    • /
    • v.26 no.2
    • /
    • pp.38-44
    • /
    • 1998
  • A new device that uses turbulent air for mixing wood fibers with thermoplastic fibers was designed and its mixing effectiveness was evaluated in wood fiber and polypropylene fiber composites. Composites made by the turbulent air mixing (TAM) process performed better than composites made by the conventional Rando-Webber forming or nonwoven web process with an additional needling step. Thus, the TAM process proved to be a simple and efficient method in mixing wood fibers with short thermoplastic fibers for the production of wood fiber and thermoplastic fiber composites.

  • PDF

An Experimental Study on Turbulent Diffusion Flame in Double Coaxial Air Jets(II) (동축이중 공기분류중의 난류확산화염에 관한 실험적 연구 II)

  • 조용대;최병윤
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.5
    • /
    • pp.1234-1243
    • /
    • 1990
  • Double coaxial are jets(annular and coaxial air jets) between which propane gas is fed was selected to study the structure of diffusion flames in turbulent shear flow. Schlieren and direct photographs are taken to visualize the flame structure. Mean and fluctuating temperatures and ion currents were measured to investigate the macroscopic and the instantaneous flame structure. The objective of this study is to understand the interaction between combustion and mixing process especially in the transition region of turbulent shear flow. The investigation reported in this paper focuses on the macroscopic and the instantaneous structures of three flames obtained. The increased mixing effect resulting from increase of Reynolds number of central air jet makes the flame bluish and short. When the velocity of surrounding air stream is higher than that of central air jet, the instantaneous flame structure is composed of coherent structure. It is considered that the flame structure of transitional region of mixing layer depends on the structure of mixing layer of non-reacting conditions.

Wood Fiber-Thermoplastic Fiber Composites by Turbulent Air Mixing Process(II) - Effect of Process Variables on The Mechanical Properties of Composites - (난기류 혼합법을 이용한 목섬유-열가소성 섬유 복합재에 관한 연구(II) - 공정변수가 복합재의 기계적 성질에 미치는 영향 -)

  • Yoon, Hyoung-Un;Lee, Phil-Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.25 no.3
    • /
    • pp.58-65
    • /
    • 1997
  • This research was carried out to evaluate the effect of process variables on mechanical properties of the wood fiber-thermoplastic fiber composites by turbulent air mixing method. The turbulent air mixer used in this experiment was specially designed in order to mix wood fiber and thermoplastic polypropylene or nylon 6 fiber, and was highly efficient in the mixing of relatively short plastic fiber and wood fiber in a short time without any trouble. The adequate hot - pressing temperature and time in our experimental condition were $190^{\circ}C$ and 9 minutes in 90% wood fiber - 10% polypropylene fiber composite and $220^{\circ}C$ and 9 minutes in 90% wood fiber 10% nylon 6 fiber composite. Both in the wood fiber - polypropylene fiber composite and wood fiber- nylon 6 fiber composite, the mechanical properties improved with the increase of density. Statistically, the density of composite appeared to function as the most significant factor in mechanical properties. Within the 5~15% composition ratios of polypropylene or nylon 6 fiber to wood fiber, the composition ratio showed no significant effect on the mechanical properties. Bending and tensile strength of composite, however, slightly increased with the increase of synthetic fiber content. The increase of mat moisture content showed no significant improvement of mechanical properties both in wood fiber - polypropylene fiber composite and wood fiber nylon 6 fiber composite. Wood fiber - nylon 6 fiber composite was superior in th mechanical strength to wood fiber-polypropylene fiber composite, which may be related to higher melt flow index of nylon 6 fiber(22g/10min) than of polypropylene fiber(4.3g/10min).

  • PDF

Flame Hole Dynamics Model of a Diffusion Flame in Turbulent Mixing Layer (난류 혼합층에서 확산화염에 대한 flame hole dynamics 모델)

  • Kim, Jun-Hong;Chung, S.H.;Ahn, K.Y.;Kim, J.S.
    • Journal of the Korean Society of Combustion
    • /
    • v.8 no.3
    • /
    • pp.15-23
    • /
    • 2003
  • Partial quenching structure of turbulent diffusion flames in a turbulent mixing layer is investigated by the method of flame hole dynamics in order to develop a prediction model for turbulent flame lift off. The essence of flame hole dynamics is derivation of the random walk mapping, from the flame-edge theory, which governs expansion or contraction of flame holes initially created by local quenching events. The numerical simulation for flame hole dynamics is carried out in two stages. First, a direct numerical simulation is performed for constant-density fuel-air channel mixing layer to obtain the turbulent flow and mixing fields, from which a time series of two dimensional scalar dissipation rate array is extracted at a fixed virtual flame surface horizontally extending from the end of split plate to the downstream. Then, the Lagrangian simulation of the flame hole random walk mapping projected to the scalar dissipation rate array yields temporally evolving turbulent extinction process and its statistics on partial quenching characteristics. The statistical results exhibit that the chance of partial quenching is strongly influenced by the crossover scalar dissipation rate while almost unaffected by the iteration number of the mapping that can be regarded as a flame-edge speed.

  • PDF

Experimental Study on Flame-Vortex Interactions in Turbulent Hydrogen Non-premixed Flames with Coaxial Air (동축공기 수소확산 화염에서의 화염과 와류의 상호작용 실험연구)

  • Kim, Mun-Ki;Oh, Jeong-Suk;Choi, Young-Il;Yoon, Young-Bin
    • 한국연소학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.86-94
    • /
    • 2006
  • This paper investigates the effects of acoustic forcing on NOx emissions and mixing process in the near field region of turbulent hydrogen nonpremixed flames. The resonance frequency was selected to force the coaxial air jet acoustically, because the resonance frequency is effective to amplify the forcing amplitude and reduce NOx emissions. When the resonance frequency is acoustically excited, a streamwise vortex is formed in the mixing layer between the coaxial air jet and coflowing air. As the vortex develops downstream, it entrains both ambient air and combustion products into the coaxial air jet to mix well. In addition, the strong vortex pulls the flame surface toward the coaxial air jet, causing intense chemical reaction. Acoustic excitation also causes velocity fluctuations of coaxial air jet as well as fuel jet but, the maximum value of centerline fuel velocity fluctuation occurs at the different phases of $\Phi$=$180^{\circ}$ for nonreacting case and $\Phi$=$0^{\circ}$ for reacting case. Since acoustic excitation enhances the mixing rate of fuel and air, the line of the stoichiometric mixture fraction becomes narrow. Finally, acoustic forcing at the resonance frequency reduces the normalized flame length by 15 % and EINOx by 25 %, compared to the flame without acoustic excitation.

  • PDF

Numerical Analysis on the Thermal Choking Process In a Model SCRamjet Engine (모델 스크림제트 연소기내의 열질식과정 수치해석)

  • Moon, G.W.;Choi, J.Y.;Jeung, I.S.
    • 한국연소학회:학술대회논문집
    • /
    • 2000.05a
    • /
    • pp.76-84
    • /
    • 2000
  • A numerical study was conducted for the investigation of thermal choking process in a model scramjet engine based on the experimental results at the Australian National University. The results of numerical simulation showed that thermal choking process could be related to the interaction between hypersonic flow and fuel-air mixing process. Especially, we could make sure that turbulent mixing was most important parameter to the thermal choking process.

  • PDF

Wood Fiber-Thermoplastic Fiber Composites by Turbulent Air Mixing Process(I) - Effects of Process Variables on the Physical Properties of Composites - (난기류 혼합법을 이용한 목섬유-열가소성 섬유 복합재에 관한 연구(I) - 공정변수가 복합재의 물리적 성질에 미치는 영향 -)

  • Yoon, Hyoung-Un;Lee, Phil-Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.24 no.3
    • /
    • pp.101-109
    • /
    • 1996
  • Effects of process variables were evaluated in physical properties of the wood fiber-thermoplastic fiber composites using nonwoven web method. Turbulent air mixer using compressed air was employed to mix wood fiber with two types of thermoplastic polypropylene and nylon 6 fibers. The optimal hot press temperature and time were found to be $190^{\circ}C$ and 9 minutes in wood fiber-polypropylene fiber composite and to be $220^{\circ}C$ and 9 minutes in wood fiber-nylon 6 fiber composite. As the density of wood fiber-polypropylene fiber composite and wood fiber-nylon 6 fiber composite increased, the physical properties were improved The density appeared to be the most significant factor on physical properties in the statistical analysis. The composition ratio of polypropylene or nylon 6 fiber to wood fiber was considered not to be statistically significant factor. The thickness swelling decreased somewhat in wood fiber-polypropylene fiber composite and wood fiber-nylon 6 fiber composite as the content of synthetic fiber increased. As the increase of mat moisture content, dimensional stability was improved in wood fiber-polypropylene fiber composite but not in wood fiber-nylon 6 fiber composite.

  • PDF

Investigation of NOx Formation Charateristics in Multi Air Staged Spray Combustor (공기 다단 분무연소기의 NOx 발생특성에 관한 실험적 연구)

  • Kim, Han-Seok;An, Guk-Yeong;Kim, Ho-Geun;Baek, Seung-Ok
    • 연구논문집
    • /
    • s.31
    • /
    • pp.23-43
    • /
    • 2001
  • An experimental investigation on the reduction of nitrogen oxide emission from swirling, turbulent diffusion flames was conducted using multi air staged combustor, The combustor utilizes swirler to dampen fuel/air mixing, allowing an extended residence time for fuel pyrolysis and fuel-N conversion chemistry in an locally fuel-rich environment prior to burnout. This process also allow to reduce thermal NOx formation to lessen the temperature of reaction zone. The aerodynamic process therefore emulates the conventional staged combustion process, but without the need for the physically separate fuel-rich and -lean stages. Parametric studies on the ratios of each staged air and droplet size were carried out the feasibility of fuel/air mixing for low NOx combustion with diesel and pyridine mixed diesel fuel oil.

  • PDF

Effects of Process Variables and MAPP Coupling Agent on Properties of Wood Fiber-Polypropylene Fiber Composite by Turbulent Air Mixing (공정변수(工程變數)와 MAPP 결합제(結合劑)가 난기류(亂氣流) 혼합방식(混合方式)에 의하여 제조(製造)된 목섬유(木纖維)-폴리프로필렌섬유(纖維) 복합재(複合材)의 성질(性質)에 미치는 영향(影響))

  • Yoon, Hyoung-Un;Park, Jong-Young
    • Journal of the Korean Wood Science and Technology
    • /
    • v.26 no.1
    • /
    • pp.76-86
    • /
    • 1998
  • Effects of processing variables and MAPP (maleic anhydride polypropylene) coupling agent on the properties of composite were discussed for turbulent-air-mixed woodfiber-polypropylenefiber composites. In this research, density, composition ratio, and mat moisture content were established as processing variables, and emulsified MAPP prepared by direct pressure method was incorporated as the coupling agent. And the turbulent air mixer, which was improved in function through alteration of our previous fiber mixer, was used to mix wood fibers and polypropylene fibers. At the addition level of 1% MAPP, based on oven-dried wood fiber weight, woodfiber-polypropylenefiber composites generally showed enhanced the physical and mechanical properties. And composites with low to medium densities of 0.6 to 0.8g/$cm^3$ greatly increased in these property values than with high densities of 1.0g/$cm^3$ or more by adding 1 % MAPP. Thus, MAPP addition was thought to be an effective way of enhancing properties for nonwoven web composites. At the mat moisture contents of 5 to 20%, however, the physical and mechanical properties were not enhanced by adding 1% MAPP. In the composites containing 15% polypropylene fibers, the lowest thickness swelling and water absorption values were observed at the 1% MAPP level. The addition of more than 1% MAPP had the adverse effect on the physical and mechanical properties of composites.

  • PDF

Studies on Composites Using Wood and Nonwood Fibers - Effects of Polypropylene Fiber Length and Process Variables - (목질(木質)과 비목질계(非木質系) 섬유(纖維)를 활용한 복합재(複合材) 연구(硏究) - 폴리프로필렌의 섬유장(纖維長)과 공정변수(工程變數)의 영향(影響)을 중심(中心)으로 -)

  • Lee, Phil-Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.25 no.2
    • /
    • pp.33-44
    • /
    • 1997
  • This study was executed to examine the effects of polypropylene fiber length and process variables of the composites made from wood fiber and nonwood fiber mixed formulations. As a nonwood fiber the polypropylene with 3 denier thickness of tow condition was selected and cut into each length of 0.5, 1.0, 1.5, 2.0 and 2.5cm to mix with wood fiber. And also western hemlock wood fiber for medium density fiberboard was prepared. First, to decide an adequate polypropylene mixing fiber length, the composites of 1.0g/$cm^3$ density were made from 10% polypropylene fiber by each of five lengths and 90% western hemlock fiber mixed formulations. Thereafter as the experiments of process variable, the composites applied with adequate polypropylene fiber length(1.5cm) were made from 4 density levels (0.6, 0.8, 1.0, 1.2g/$cm^3$). 3 mixed formulations of wood fiber to polypropylene fiber(95 : 5, 90 : 10, 85 : 15), and 3 mat moisture contents(5, 10, 20%). According to the results and discussions it was concluded as follows ; The physical and mechanical properties were shown improved tendency. as polypropylene fiber length was increased in the range from 0.5 to 1.5cm, but shown decreasing tendency from 2.0 to 2.5 cm. Accordingly, it was shown that polypropylene fiber length is limited to 1.5cm or less length in mixing wood fiber and polypropylene fiber by turbulent air mixing process. As the densities of wood fiber-polypropylene fiber composites were increased, the physical and mechanical properties were clearly improved. Also they were shown significantly increasement statistically between densities respectively. In the mixed formulations, physical and mechanical properties were shown only slightly improvement, as they changed from 95 : 5 to 85 : 15 in wood fiber to polypropylene fiber. Despite of increasement of mat moisture content, mechanical properties were not improved significantly but physical properties were improved somewhat in wood fiber-polypropylene fiber composites.

  • PDF