• Title/Summary/Keyword: turbulent air mixing

Search Result 125, Processing Time 0.02 seconds

The Effect of Eccentricity on Aerated Oil in High-Speed Journal Bearing

  • Chun, Sang Myung
    • KSTLE International Journal
    • /
    • v.2 no.1
    • /
    • pp.1-11
    • /
    • 2001
  • The influence of aerated oil on a high-speed journal bearing is examined by classical thermohydrodynamic lubrication theory coupled with analytical models for viscosity and density of air-oil mixture in fluid-film bearing. Convection to the walls and mixing with supply oil and re-circulating oil are considered. With changing eccentricity ratio, it is investigated the effects of air bubbles on the performance of a high-speed plain journal bearing. Just at the moderate eccentricity ratios, even if the involved aeration levels are not so severe and the entrained air bubble sizes are not so small, it is found that the bearing load and friction force may be changed so visibly for the high speed bearing operation.

  • PDF

PSR-Based Microstructural Modeling for Turbulent Combustion Processes and Pollutant Formation in Double Swirler Combustors

  • Kim, Yong-Mo;Kim, Seong-Ku;Kang, Sung-Mo;Sohn, Jeong-Lak
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.88-97
    • /
    • 2001
  • The present study numerically investigates the fuel-air mixing characteristics, flame structure, and pollutant emission inside a double-swirler combustor. A PSR(Perfectly Stirred Reactor) based microstructural model is employed to account for the effects of finite rate chemistry on the flame structure and NO formation. The turbulent combustion model is extended to nonadiabatic flame condition with radiation by introducing an enthalpy variable, and the radiative heat loss is calculated by a local, geometry-independent model. The effects of turbulent fluctuation are taken into account by the joint assumed PDFs. Numerical model is based on the non-orthogonal body-fitted coordinate system and the pressure/velocity coupling is handled by PISO algorithm in context with the finite volume formulation. The present PSR-based turbulent combustion model has been applied to analyze the highly intense turbulent nonpremixed flame field in the double swirler combustor. The detailed discussions were made for the flow structure, combustion effects on flow structure, flame structure, and emission characteristics in the highly intense turbulent swirling flame of the double swirler burner.

  • PDF

Characteristics of the Atomization in Counter-Swirl Internal Mixing Atomizer

  • Lee, Sam-Goo;Kim, Kyu-Chul;Park, Byung-Joon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.27-27
    • /
    • 1999
  • To illustrate the global variation of the droplet mean diameters and the turbulent flow characteristics in counterflowing internal mixing pneumatic nozzle, the experimental measurements at five axial downstream locations(i.e., at Z=30, 50, 80, 120, and 170mm) were made using a PDPA(Phase Doppler Particle Analyzer) under the different air injection pressures ranging from 40 ㎪ to 120 ㎪. A nozzle with axi-symmetric tangential-drilled four holes at an angle of 15$^{\circ}$ has been designed and manufactured. The distributions of velocities, turbulence intensities, turbulence kinetic energy, turbulent correlation coefficients, spray angle, droplet mean diameters, volume flux, number density are quantitatively analyzed. It is possible to discern the effects of increasing air pressure. It indicates that the strong axial momentum in spite of more or less disparity between the velocity components means more reluctant to disperse radially, and that axial fluctuating velocities are substantially higher than those of radial and tangential ones, suggesting that the disintegration process is enhanced under higher air assist. The larger droplets are detected in the spray centerline at the near stations and smaller ones are generated due to further subsequent breakup at farther axial locations are attributed to the internal mixing type nozzle characteristics. Despite of the strong axial momentum, the poor atomization around the centre close to the nozzle exit is attributed to the lower rates of spherical particles which are not subject to instantaneous breakup. As it goes downstream, however, substantial increases in SMD(Sauter Mean Diameter) from the central part toward spray periphery are understandable because the droplet relative velocity is too low to bring about any subsequent disintegration.

  • PDF

Studies on Composites Using Wood and Nonwood Fibers - Effects of Polypropylene Fiber Length and Process Variables - (목질(木質)과 비목질계(非木質系) 섬유(纖維)를 활용한 복합재(複合材) 연구(硏究) - 폴리프로필렌의 섬유장(纖維長)과 공정변수(工程變數)의 영향(影響)을 중심(中心)으로 -)

  • Lee, Phil-Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.25 no.2
    • /
    • pp.33-44
    • /
    • 1997
  • This study was executed to examine the effects of polypropylene fiber length and process variables of the composites made from wood fiber and nonwood fiber mixed formulations. As a nonwood fiber the polypropylene with 3 denier thickness of tow condition was selected and cut into each length of 0.5, 1.0, 1.5, 2.0 and 2.5cm to mix with wood fiber. And also western hemlock wood fiber for medium density fiberboard was prepared. First, to decide an adequate polypropylene mixing fiber length, the composites of 1.0g/$cm^3$ density were made from 10% polypropylene fiber by each of five lengths and 90% western hemlock fiber mixed formulations. Thereafter as the experiments of process variable, the composites applied with adequate polypropylene fiber length(1.5cm) were made from 4 density levels (0.6, 0.8, 1.0, 1.2g/$cm^3$). 3 mixed formulations of wood fiber to polypropylene fiber(95 : 5, 90 : 10, 85 : 15), and 3 mat moisture contents(5, 10, 20%). According to the results and discussions it was concluded as follows ; The physical and mechanical properties were shown improved tendency. as polypropylene fiber length was increased in the range from 0.5 to 1.5cm, but shown decreasing tendency from 2.0 to 2.5 cm. Accordingly, it was shown that polypropylene fiber length is limited to 1.5cm or less length in mixing wood fiber and polypropylene fiber by turbulent air mixing process. As the densities of wood fiber-polypropylene fiber composites were increased, the physical and mechanical properties were clearly improved. Also they were shown significantly increasement statistically between densities respectively. In the mixed formulations, physical and mechanical properties were shown only slightly improvement, as they changed from 95 : 5 to 85 : 15 in wood fiber to polypropylene fiber. Despite of increasement of mat moisture content, mechanical properties were not improved significantly but physical properties were improved somewhat in wood fiber-polypropylene fiber composites.

  • PDF

Flame-Vortex Interaction and Mixing in Turbulent Hydrogen Diffusion Flames with Coaxial Air (동축공기 수소확산화염에서 화염-와류 상호작용 및 혼합)

  • Kim, Mun-Ki;Oh, Jeong-Seog;Choi, Young-Il;Yoon, Young-Bin
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.149-154
    • /
    • 2007
  • This study examines the effect of acoustic excitation using forced coaxial air on the flame characteristics of turbulent hydrogen nonpremixed flames. A resonance frequency was selected to acoustically excite the coaxial air jet due to its ability to effectively amplify the acoustic amplitude and reduce flame length and NOx emissions. Acoustic excitation causes the flame length to decrease by 15 % and consequently, a 25 % reduction in EINOx is achieved, compared to a flame without acoustic excitation. Moreover, acoustic excitation induces periodical fluctuation of the coaxial air velocity, thus resulting in slight fluctuation of the fuel velocity. From phase-lock PIV and OH PLIF measurement, the local flow properties at the flame surface were investigated under acoustic forcing. During flame-vortex interaction in the near field region, the entrainment velocity and the flame surface area increased locally near the vortex. This increase in flame surface area and entrainment velocity is believed to be a crucial factor in reducing flame length and NOx emission in coaxial jet flames with acoustic excitation. Local flame extinction occurred frequently when subjected to an excessive strain rate, indicating that intense mass transfer of fuel and air occurs radially inward at the flame surface.

  • PDF

A Study on Combustion Characteristics of Turbulent Methane/Oxygen Diffusion Flames (메탄/산소 난류 확산화염의 연소 특성에 관한 연구)

  • Lee, Sang-Min;Kim, Ho-Keun;Kim, Han-Seok;Ahn, Kook-Young
    • 한국연소학회:학술대회논문집
    • /
    • 2004.06a
    • /
    • pp.118-123
    • /
    • 2004
  • The combustion characteristics of 0.03MW turbulent methane/oxygen diffusion flames have been investigated to give basic informations for designing industrial oxyfuel combustors. NOx reduction has become one of the most determining factors in the combustor design since 3-5% nitrogen is intrinsically included from the current oxygen producing processes. Flame lengths and NOx concentrations were measured by varying flow velocities with and without installing quarls. Flame stabilities are significantly enhanced by oxyfuel combustion in contrast to air-fuel combustion. Flame length decreases with increasing fuel or oxygen velocity because of the enhancement of turbulent mixing. NOx concentration was reduced with increasing flo velocities. This can be attributed to the entrainment of inert product gases into flame decreasing flame temperature. The installation of quarl on the burners rather increased NOx concentration since the quarl blocked the entrainment above the nozzles.

  • PDF

Research Activities and Directions of Turbulent Combustion and Hydrocarbon Fuels in Scramjet Engine (스크램제트 엔진의 난류 연소 및 탄화수소 연료 연구 및 방향)

  • Choi, J.Y.;Parent, Bernard;Won, S.H.;Lee, S.H.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.330-333
    • /
    • 2008
  • Present paper introduces the research activities on fuel-air mixing and combustion of supersonic turbulent flows in scramjet combustor carried out in Aerospace Combustion and Propulsion Laboratory of the department of Aerospace Engineering of the Pusan national University. Also, an introduction will be given to the characteristics of the supercritical hydrocarbon fuel combustion in a practical scramjet engine and its numerical modeling approaches.

  • PDF

NOx Reduction by Acoustic Excitation on Coaxial Air Stream in Lifted Turbulent Hydrogen Non-Premixed Flame (부상된 수소난류확산화염에서 동축공기의 음향가진에 의한 NOx 저감)

  • Heo, Pil-Won;Oh, Jeong-Seog;Yoon, Young-Bin
    • Journal of the Korean Society of Combustion
    • /
    • v.14 no.1
    • /
    • pp.31-38
    • /
    • 2009
  • The effects of acoustic excitation of coaxial air on mixing enhancement and reduction of nitrogen oxides (NOx) emission were investigated. A compression driver was attached to the coaxial air supply tube to impose excitation. Measurements of NOx emission with frequency sweeping were performed to observe the trend of NOx emission according to the fuel and air flow conditions and to inquire about the effective excitation frequency for reducing NOx. Then, Schlieren photographs were taken to visualize the flow field and to study the effect of excitation. In addition, phase-locked particle image velocimetry (PIV) was performed to acquire velocity field for each case and to investigate the effect of vortices more clearly. Direct photographs and OH chemiluminescence photographs were taken to study the variation of flame length and reaction zone. It was found that acoustic forcing frequencies close to the resonance frequencies of coaxial air supply tube could reduce NOx emission. This NOx reduction was influenced by mixing enhancement due to large-scale vortices formed by fluctuation of coaxial air jet velocity.

  • PDF

A Numerical Analysis on the Characteristics of Spray by Swirl Injector in Gas Turbine Combustor (가스터빈연소기에서 스월 인젝터의 분무특성에 관한 연구)

  • 이성혁;유홍선;이인섭;홍성국
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.3
    • /
    • pp.30-39
    • /
    • 2000
  • The present paper deals with the numerical simulation for the spray characteristics with swirling turbulent flows and dilution flows from swirl injectors in a simplified can type of gas turbine combustor. The main objective is to investigate the characteristics of swirling turbulent flows with dilution flows and to provide the qualitative results for the spray characteristics such as the droplet distribution and Sauter Mean Diameter(SMD). The gas-phase equations based on Eulerian approach were discretized by Finite Volume Method, together with SIMPLE algorithm and the Reynolds -Stress-Model. The liquid-phase equations based on Lagrangian method were used to predict the droplet behavior. The results of preliminary test are generally in good agreement with experimental data, and show that the anisotropy exists in the primary zone due to swirl velocity and injected air from primary injector, and then gradually decays due to turbulent mixing and consequently near-isotropy occurs in the region between primary and dilution zones. For the spray characteristics, it is indicated that the swirling flows of primary jet region increase the droplet atomization. In addition, it is showed that the swirling flows at the inlet region lead the air-fuel mixture to be distributed near the igniter and can significantly affect the spray behavior in the primary jet region.

  • PDF

Turbulent Mixing Flow Characteristics of Solid-Cone Type Diesel Spray

  • Lee, Jeekuen;Shinjae Kang;Park, Byoungjoon
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.8
    • /
    • pp.1135-1143
    • /
    • 2002
  • The intermittent spray characteristics of the single-hole diesel nozzle (d$\sub$n/=0.32 mm) used in the fuel injection system of heavy-duty diesel engines were experimentally investigated. The mean velocity and turbulent characteristics of the diesel spray injected intermittently into the still ambient were measured by using a 2-D PDPA (phase Doppler particle analyzer) . The gradient of spray half-width linearly increased with time from the start of injection, and it approximated to 0.04 at the end of the injection. The axial mean velocity of the fuel spray measured along the radial direction was similar to that of the free air jet within R/b= 1.0-1.5 regardless of elapsing time, and its non-dimensional distribution corresponds to the theoretical velocity distributions suggested by Hinze in the downstream of the spray flow fields. The turbulent intensity of the axial velocity components measured along the radial direction represented the 20-30% of the U$\sub$cι/ and tended to decrease in the outer region. The turbulent intensity in the trailing edge was higher than that in the leading edge.