• 제목/요약/키워드: turbulence field

검색결과 663건 처리시간 0.025초

Magnetic Turbulence Associated with Magnetic Dipolarizations in the Near-Tail of the Earth's Magnetosphere: Test of Anisotropy

  • Lee, Ji-Hee;Lee, Dae-Young;Park, Mi-Young;Kim, Kyung-Chan;Kim, Hyun-Sook
    • Journal of Astronomy and Space Sciences
    • /
    • 제28권2호
    • /
    • pp.117-122
    • /
    • 2011
  • In this paper, the anisotropic nature of the magnetic turbulence associated with magnetic dipolarizations in the Earth's plasma sheet is examined. Specifically, we determine the power spectral indices for the perpendicular and parallel components of the fluctuating magnetic field with respect to the background magnetic field, and compare them in order to identify possible anisotropic features. For this study, we identify a total of 47 dipolarization events in February 2008 using the magnetic field data observed by the THEMIS A, D and E satellites when they are situated near the neutral sheet in the near-Earth tail. For the identified events, we estimate the spectral indices for the frequency range from 1.3 mHz to 42 mHz. The results show that the degree of anisotropy, as defined by the ratio of the spectral index of the perpendicular components to that of the parallel component, can range from ~0.2 to ~2.6, and there are more events associated with the ratio greater than unity (i.e., the perpendicular index being greater than the parallel index) than those which are anisotropic in the opposite sense. This implies that the dipolarization-associated turbulence of the magnetic field is often anisotropic, to some non-negligible degree. We then discuss how this result differs from what the theory of homogeneous, anisotropic, magnetohydrodynamic turbulence would predict.

Bora wind characteristics for engineering applications

  • Lepri, Petra;Vecenaj, Zeljko;Kozmar, Hrvoje;Grisogono, Branko
    • Wind and Structures
    • /
    • 제24권6호
    • /
    • pp.579-611
    • /
    • 2017
  • Bora is a strong, usually dry temporally and spatially transient wind that is common at the eastern Adriatic Coast and many other dynamically similar regions around the world. One of the Bora main characteristics is its gustiness, when wind velocities can reach up to five times the mean velocity. Bora often creates significant problems to traffic, structures and human life in general. In this study, Bora velocity and near-ground turbulence are studied using the results of three-level high-frequency Bora field measurements carried out on a meteorological tower near the city of Split, Croatia. These measurements are analyzed for a period from April 2010 until June 2011. This rather long period allows for making quite robust and reliable conclusions. The focus is on mean Bora velocity, turbulence intensity, Reynolds shear stress and turbulence length scale profiles, as well as on Bora velocity power spectra and thermal stratification. The results are compared with commonly used empirical laws and recommendations provided in the ESDU 85020 wind engineering standard to question its applicability to Bora. The obtained results report some interesting findings. In particular, the empirical power- and logarithmic laws proved to fit mean Bora velocity profiles well. With decreasing Bora velocity there is an increase in the power-law exponent and aerodynamic surface roughness length, and simultaneously a decrease in friction velocity. This indicates an urban-like velocity profile for smaller wind velocities and a rural-like velocity profile for larger wind velocities. Bora proved to be near-neutral thermally stratified. Turbulence intensity and lateral component of turbulence length scales agree well with ESDU 85020 for this particular terrain type. Longitudinal and vertical turbulence length scales, Reynolds shear stress and velocity power spectra differ considerably from ESDU 85020. This may have significant implications on calculations of Bora wind loads on structures.

A Scaling of Velocity and Magnetic field in Decaying Turbulence in Expanding/Collapsing Media

  • 박준성;류동수;조정연
    • 천문학회보
    • /
    • 제36권2호
    • /
    • pp.108.2-108.2
    • /
    • 2011
  • We investigate decaying magnetohydrodynamic (MHD) turbulence by including the effects of expansion and collapse of the background medium. The problem has two time scales, the eddy turn-over time($t_{eddy}$) and the expansion/collapse time scale(${\tau}_H$). The turbulence is expected to behave differently in two regimes of $t_{eddy}$ < ${\tau}_H$ and $t_{eddy}$ > ${\tau}_H$. For instance, for $t_{eddy}$ < ${\tau}_H$, the turbulence would decay more or less as in a static medium. On the other hand, for $t_{eddy}$ > ${\tau}_H$, the effects of expansion and collapse would be dominant. We examine the properties of turbulence in the regimes of $t_{eddy}$ < ${\tau}_H$ and $t_{eddy}$ > ${\tau}_H$. Based on it, we derive a scaling for the time evolution of flow velocity and magnetic field.

  • PDF

Spanwise coherent structure of wind turbulence and induced pressure on rectangular cylinders

  • Le, Thai-Hoa;Matsumoto, Masaru;Shirato, Hiromichi
    • Wind and Structures
    • /
    • 제12권5호
    • /
    • pp.441-455
    • /
    • 2009
  • Studying the spatial distribution in coherent fields such as turbulence and turbulence-induced force is important to model and evaluate turbulence-induced forces and response of structures in the turbulent flows. Turbulence field-based coherence function is commonly used for the spatial distribution characteristic of the turbulence-induced forces in the frequency domain so far. This paper will focus to study spectral coherent structure of the turbulence and induced forces in not only the frequency domain using conventional Fourier transform-based coherence, but also temporo-spectral coherence one in the time-frequency plane thanks to wavelet transform-based coherence for better understanding of the turbulence and force coherences and their spatial distributions. Effects of spanwise separations, bluff body flow, flow conditions and Karman vortex on coherent structures of the turbulence and induced pressure, comparison between turbulence and pressure coherences as well as intermittency of the coherent structure in the time-frequency plane will be investigated here. Some new findings are that not only the force coherence is higher than the turbulence coherence, the coherences of turbulence and forces depend on the spanwise separation as previous studies, but also the coherent structures of turbulence and forces relate to the ongoing turbulence flow and bluff body flow, moreover, intermittency in the time domain and low spectral band is considered as the nature of the coherent structure. Simultaneous measurements of the surface pressure and turbulence have been carried out on some typical rectangular cylinders with slenderness ratios B/D=1 (without and with splitter plate) and B/D=5 under the artificial turbulent flows in the wind tunnel.

PIV 계측에 의한 고주파수 초음파 유동장 해석에 관한 연구 (A Study on the Flow Field Analysis with a High-frequency Ultrasonic by PIV Measurement)

  • 이상범;송민근;손승우;정광수;주은선
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집E
    • /
    • pp.727-732
    • /
    • 2001
  • The purpose of this study is to compare the time mean velocity distribution, the time mean kinetic energy, and the time mean turbulence intensity between vertical and horizontal flow fields in a coaxial circular pipe by PIV measurement. Experiments are performed at a Reynolds number 2,000, measuring regions divided as the section regions A, B, C, D in flow fields. The angle of the high-frequency ultrasonic is selected in the direction of $45^{\circ}$ to the flow axes and it is reflected several times. In results, it is clarified that the effect of gravity is given in the vertical flow field compared with the horizontal flow field and the ultrasonic affects the turbulence enhancement. And kinetic energy and turbulence intensity with ultrasonic are shown slightly bigger than those in flow field without it.

  • PDF

축류형 유체 기계에서 팁 누설 유동 해석을 위한 난류 모델 성능 비교 (Performance Assessment of Turbulence Models for the Prediction of Tip Leakage Flow in an Axial-flow Turbomachinery)

  • 이공희;백제현
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.2162-2167
    • /
    • 2003
  • It is well-known that high anisotropic characteristic of turbulent flow field is dominant inside tip leakage vortex. This anisotropic nature of turbulence invalidates the use of the conventional isotropic eddy viscosity turbulence model based on the Boussinesq assumption. In this study, to check whether an anisotropic turbulence model is superior to the isotropic ones or not, the results obtained from steady-state Reynolds averaged Navier-Stokes simulations based on the RNG ${\kappa}-{\varepsilon}$ and the Reynolds stress model in two test cases, such as a linear compressor cascade and a forward-swept axial-flow fan, are compared with experimental data. Through the comparative study of turbulence models, it is clearly shown that the Reynolds stress model, which can express the production term and body-force term induced by system rotation without any modeling, should be used to predict the complex tip leakage flow, including the locus of tip leakage vortex center, quantitatively.

  • PDF

Long-Term Evolution of Decaying MHD Turbulence in the Multiphase ISM

  • 김창구
    • 천문학회보
    • /
    • 제38권1호
    • /
    • pp.47.1-47.1
    • /
    • 2013
  • Supersonic turbulence is believed to decay rapidly within a flow crossing time irrespective of the degree of magnetization. However, this consensus of decaying magnetohydrodynamic (MHD) turbulence relies on local isothermal simulations, which are unable to investigate the role of global magnetic fields and structures. Utilizing three-dimensional MHD simulations including interstellar cooling and heating, we investigate decaying MHD turbulence within cold neutral medium sheets embedded in warm neutral medium. Early evolution is consistent with previous studies characterized rapid decay of turbulence with the decaying time shorter than a flow crossing time and power-law temporal decay of turbulent kinetic energy with slope of -1. If initial magnetic fields are strong and perpendicular to the sheet, however long term evolutions of kinetic energy shows that a significant amount of turbulent energy still remains even after ten flow crossing times, and decaying rate is reduced as field strengths increase. We analyse power spectra of remaining turbulence to show that incompressible, in-plane motions dominate.

  • PDF

Multi-scale Driving of Turbulence and Astrophysical Implications

  • Yoo, Hyunju;Cho, Jungyeon
    • 천문학회보
    • /
    • 제38권2호
    • /
    • pp.61.1-61.1
    • /
    • 2013
  • Turbulence is a common phenomenon in astrophysical fluids such as the interstellar medium (ISM) and the intracluster medium (ICM). In turbulence studies it is customary to assume that fluid powered by an energy injection on a single scale. However, in astrophysical fluids, there can be many different driving mechanisms that act on different scales simultaneously. In this work, we assume multiple energy injection scale (2${\surd}$12 and 15

  • PDF

Probabilistic analysis of gust factors and turbulence intensities of measured tropical cyclones

  • Tianyou Tao;Zao Jin;Hao Wang
    • Wind and Structures
    • /
    • 제38권4호
    • /
    • pp.309-323
    • /
    • 2024
  • The gust factor and turbulence intensity are two crucial parameters that characterize the properties of turbulence. In tropical cyclones (TCs), these parameters exhibit significant variability, yet there is a lack of established formulas to account for their probabilistic characteristics with consideration of their inherent connection. On this condition, a probabilistic analysis of gust factors and turbulence intensities of TCs is conducted based on fourteen sets of wind data collected at the Sutong Cable-stayed Bridge site. Initially, the turbulence intensities and gust factors of recorded data are computed, followed by an analysis of their probability densities across different ranges categorized by mean wind speed. The Gaussian, lognormal, and generalized extreme value (GEV) distributions are employed to fit the measured probability densities, with subsequent evaluation of their effectiveness. The Gumbel distribution, which is a specific instance of the GEV distribution, has been identified as an optimal choice for probabilistic characterizations of turbulence intensity and gust factor in TCs. The corresponding empirical models are then established through curve fitting. By utilizing the Gumbel distribution as a template, the nexus between the probability density functions of turbulence intensity and gust factor is built, leading to the development of a generalized probabilistic model that statistically describe turbulence intensity and gust factor in TCs. Finally, these empirical models are validated using measured data and compared with suggestions recommended by specifications.

Wind turbulence characteristics over an industrial landscape in neutral atmospheric conditions

  • Petr Michalek;Stanislav Pospisil;Pavel Sedlak
    • Wind and Structures
    • /
    • 제39권2호
    • /
    • pp.111-123
    • /
    • 2024
  • The atmospheric turbulence characteristics measured at a meteorological station in northwest part of the Czech Republic are presented for selected time periods in the year 2017. The terrain of this region is influenced by surface coal mining and the related industry. The datasets used in this study were measured using four ultrasonic anemometers installed on an 80 m high meteorological mast at heights of 20, 40, 60 and 80 m, respective. From the primary high-frequency datasets, time intervals in order of hours were selected and integral turbulence characteristics (ITCs), turbulence intensities and turbulence spectra were analyzed. The time intervals were selected with respect to atmospheric stability parameter, known as Obukhov number. We concentrated on the days with higher wind velocity and neutral atmospheric stratification. The wind characteristics investigated in this study include the wind speed, wind direction and its histograms, turbulence intensity, friction velocity and wind power spectra. The ITCs and spectral characteristics were compared with the theoretical models and values from the literature. The resulting ITCs showed the values for urban locations similar to those found in other studies and can be used in practical design. The computed turbulence spectra followed the shape of theoretical spectra of turbulence for both horizontal and vertical velocity components. The computed integral length scales have shown to be unsuitable for further use due to their highly scattered values.