• 제목/요약/키워드: turbomachinery design

검색결과 75건 처리시간 0.026초

난류 유동을 갖는 가스 포일 저널 베어링의 성능 예측 (Performance Predictions of Gas Foil Journal Bearings with Turbulent Flows)

  • 문진혁;김태호
    • Tribology and Lubricants
    • /
    • 제35권3호
    • /
    • pp.190-198
    • /
    • 2019
  • Gas foil bearings (GFBs) enable small- to medium-sized turbomachinery to operate at ultra-high speeds in a compact design by using ambient air or process gas as a lubricant. When using air or process gas, which have lower viscosity than lubricant oil, the turbomachinery has the advantage of reduced power loss from bearing friction drag. However, GFBs may have high Reynolds number, which causes turbulent flows due to process gas with low viscosity and high density. This paper analyzes gas foil journal bearings (GFJBs) with high Reynolds numbers and studies the effects of turbulent flows on the static and dynamic performance of bearings. For comparison purposes, air and R-134a gas lubricants are applied to the GFJBs. For the air lubricant, turbulence is dominant only at rotor speeds higher than 200 krpm. At those speeds, the journal eccentricity decreases, but the film thickness, power loss, and direct stiffness and damping coefficients increase. On the other hand, the R-134a gas lubricant, which that has much higher density than air, causes dominant turbulence at rotor speeds greater than 10 krpm. The turbulent flow model predicts decreased journal eccentricity but increased film thickness and power loss when compared with the lamina flow model predictions. The vertical direct stiffness and damping coefficients are lower at speeds below 100 krpm, but higher beyond that speeds for the turbulent model. The present results indicate that turbulent flow effects should be considered for accurate performance predictions of GFJBs with high Reynolds number.

공기조화, 냉동 분야의 최근 연구 동향 - 1998년 1999년 학회지 논문에 대한 종합적 고찰 - (Recent Progress in Air Conditioning and Refrigeration Research - A Review of papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 1998 and 1999 -)

  • 이재헌;김광우;김병주;이재효;김우승;조형희;김민수
    • 설비공학논문집
    • /
    • 제12권12호
    • /
    • pp.1098-1125
    • /
    • 2000
  • A review on the papers published in the Korean Journal of Air-Conditioning and Refrigerating Engineering in 1998 and 1999 has been done. Focus has been put on current status of research in the aspect of heating, cooling, ventilation, sanitation and building environment. The conclusions are as follows. 1) A review of the recent studies on fluid flow, turbomachinery and pipe-network shows that many experimental investigations are conducted in applications of impingement jets. Researches on turbulent flows, pipe flows, pipe-networks are focused on analyses of practical systems and prediction of system performance. The results of noise reduction in the turbomachinery are also reported. 2) A review of the recent studies on heat transfer analysis and heat exchanger shows that there were many papers on the channel flow with the application to the design of heat exchanger in the heat transfer analysis. Various experimental and numerical papers on heat exchanger were also published, however, there were few papers available for the analysis of whole system including heat exchanger. 3) A review of the recent studies on heat pump system have focused on the multi-type system and the heat pump cycle to utilize treated sewage as the heat source. The defrosting and the frosting behaviors in the fin-tube heat exchanger is experimentally examined by several authors. Several papers on the ice storage cooling system are presented to show the dynamic simulation program and optimal operation conditions. The study on the micro heat pipes for the cooling of high power electronic components is carried out to examine the characteristics of heat and mass transfer processed. In addition to these, new type of separate thermosyphon is studied experimentally. 4) The recent studies on refrigeration/air conditioning system have focused on the system performance and efficiency for new alternative refrigerants. New systems operating with natural refrigerants are drawing lots of attention. In addition to these, evaporation and condensation heat transfer characteristics of traditional and new refrigerants are investigated for plain tubes and also for microfin tubes. Capillary tubes and orifice are main topics of research as expansion devices and studies on thermophysical properties of new refrigerants and refrigerant/oil mixtures are widely carried out. 5) A review of the recent studies on absorption cooling system shows that numerous experimental and analytical studies on the improvement of absorber performance have been presented. Dynamic analysis of compressor have been performed to understand its vibration characteristics. However research works on tow-phase flow and heat transfer, which could be encountered in the refrigeration system and various phase-change heat exchanger, were seemed to be insufficient. 6) A review of recent studies on duct system shows that the methods for circuit analysis, and flow balancing have been presented. Researches on ventilation are focused on the measurement of ventilation efficiency, and variation of ventilation efficiency with ventilation methods by numerous experimental and numerical studies. Furthermore, many studies have been conducted in real building in order to estimate indoor thermal environments. Many research works to get some information for cooling tower design have been performed but are insufficient. 7) A review on the recent studies on architectural thermal environment and building mechanical systems design shows that thermal comfort analysis is sitting environment, thermal performance analysis of Korean traditional building structures., and evaluation of building environmental load have been performed. However research works to improve the performance of mechanical system design and construction technology were seemed to be insufficient.

  • PDF

160% 피치의 유로에서 단일익형에 의한 캐스케이드 실험을 위한 벽면의 설계에 관한 연구 (A Study of Design of Sidewalls for Cascade Model with Single Blade Within a 160% Pitch Passage)

  • 조종현;김영철;안국영;조수용
    • 한국항공우주학회지
    • /
    • 제37권6호
    • /
    • pp.527-536
    • /
    • 2009
  • 캐스케이드 실험장치에 한 개의 익형을 설치하여 캐스케이드 실험이 가능한 장치벽면의 설계를 수행하였다. 장치의 폭은 피치의 160% 넓이이다. 이 경우에 실험장치 내에 다수개의 블레이드를 설치하는 경우에 비하여 소형의 장치라도 실험의 정확성이 향상되는 장점이 있지만, 피치방향으로 주기조건을 맞추기가 어렵다. 본 연구에서는 주기조건이 얻어지도록 벽면의 형상설계를 내부유동장의 결과를 바탕으로 기울기기반과 유전자알고리즘의 방식을 사용하여 벽면을 설계하였다. 이를 위하여 목적함수는 캐스케이드 익형의 표면에서 얻어진 마하수를 적용하였으며, 실험장치의 형상 조정이 가능한 14개의 설계변수를 적용하였다. 유전자알고리즘에 의한 최적화 설계방식이 향상된 결과를 보여주었다.

공기 포일 베어링으로 지지되는 터보 압축기의 공력 불안정성이 로터에 미치는 진동 영향 (Rotordynamci Effects Due to Aerodynamic Instability in a Turbo-compressor with Air Foil Bearings)

  • 김태호;이용복;김창호;김광호;이남수
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2002년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.191-198
    • /
    • 2002
  • Oil-free turbo-compressor supported by compliant foil bearings which remove oil-contamination by elimination of the conventional ball bearing and oil lubrication systems is presented. Turbo-compressor makes two individual air compression with two impellers at operating speed, 39,000rpm. In this study, the rotordynamic effects caused by aerodynamic instability were investigated with variable mass flow rate. Correlation between frequencies of pressure fluctuation in two diffusers and those of excitation forces on rotor were clearly developed in aerodynamic unsteady region. Thus, these results show that it is beneficial to design high speed rotating turbomachinery considering coupling effect between aerodynamic instability and rotordynamic force.

  • PDF

허브면 형상의 변경을 통한 초음속 압축단의 공력효율 개선 (Improvement of Aerodynamic Efficiency of Supersonic Stage by the Modification of Hub Flowpath Shape)

  • 박기철
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2002년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.227-233
    • /
    • 2002
  • It is common for highly loaded supersonic stage to have very high relative inlet Mach number. To get this level of inlet Mach number, rotor blade outer diameter or rotational speed should be increased. In the case of commercial turbo-fan engine, it is preferred to make the rotor blade outer diameter large than increasing the rotational speed. But, for multi-stage fan of military engines, overall diameter is often restricted and they are apt to increase the rotational speed. With high rotational speed, relative inlet Mach number is likely to be well supersonic over the entire rotor blade span and the characteristic of the stage is affected with meridional shape of the stage, especially at near hub or tip. In this paper, the aerodynamic performance of two different hub surface shape is compared and it's merit and demerits were discussed.

  • PDF

정상 간섭 익렬 계산 모델을 용한 1단 축류 송풍기의 성능 예측 (Performance Prediction of the 1-Stags Axial Fan using Steady Coupled Blade Row Calculation Model)

  • 손상범;주원구;조강래
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 1998년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.49-54
    • /
    • 1998
  • The flow inside an axial turbomachinery with multi-stage can be characterized as unsteady phenomena. In order to predict accurately these complex unsteady flow patterns including rotor-stator interaction effects, enormous computer resources are required. So it is not compatible in preliminary design process. In this study, steady coupled blade row flow with rotor-stator interaction solver is developed using interrow mixing model and used to predict the performance of the axial fan. To verify the computational method, the calculations are compared with experimental results and show satisfactory agreement with them. The interaction effects on the performance of the axial fan have also been studied by comparing the results of steady coupled blade row and steady single blade row flow calculation.

  • PDF

공기 포일 베어링으로 지지되는 터보 압축기의 공력 불안정성이 로터에 미치는 진동 영향 (Rotordynamic Effects Due to Aerodynamic Instability in a Turbo-compressor with Air Foil Bearings)

  • 김태호;이용복;김창호;이남수;김광호;신유환
    • 한국유체기계학회 논문집
    • /
    • 제6권2호
    • /
    • pp.62-69
    • /
    • 2003
  • An oil-free turbo-compressor supported by compliant foil bearings which remove oil-contamination by elimination of a conventional ball bearing and oil lubrication systems is presented. Turbo-compressor makes two individual air compressions with two impellers at a operating speed of 39,000 rpm. In this study, the rotordynamic effects caused by aerodynamic instability were investigated with variable mass flow rates. Correlations between frequencies of pressure fluctuation in two diffusers and those of excitation forces on rotor were clearly observed in an aerodynamic unsteady region. Thus, these results show that it is beneficial to design high-speed rotating turbomachinery by considering coupling effect between aerodynamic instability and rotordynamic force.

이단 압축기의 동력학적 설계 및 운전 특성에 관한 연구 (Design and Operation Characteristics of a Two-Stage Compressor)

  • 이용복;김태호;김창호;이남수;최동훈
    • 한국유체기계학회 논문집
    • /
    • 제5권1호
    • /
    • pp.55-61
    • /
    • 2002
  • The feasibility of an oil-free, motor-driven, two-stage centrifugal compressor supported by air bump bearings is investigated. This centrifugal compressor is driven by a 75 kW motor at an operating speed of 39,000 RPM, and a pressure ratio of the compressor is set up to 4. The analysis is performed by using bearing equilibrium position, heaving stillness, Campbell diagram, unbalance response, and stability. It is demonstrated in this paper that air bump bearings can be adopted well to an oil-free, motor-driven, centrifugal compressor. Specially, Cu-coated bump bearings have enough damping force to reduce a synchronous unbalance for rigid modes of the two-stage compressor. Futhermore, this concept may be applied to the flexible rotor system such as high speed turbomachinery with a super critical speed.

치수효과를 고려한 횡류홴의 작동특성연구 (A Study on the Operational Characteristic with the Scale Effect of the Cross-Flow Fan)

  • 김형섭;김윤제
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2004년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.583-589
    • /
    • 2004
  • One of noticeable features in the cross flow fan is that a working fluid passes through impeller blade twice without distinction between the inlet and exit angles. Also, it does produce higher circumferential velocity than other types of blade at the same flow rate in accordance with the application of the forward curved shape. However, a design theory for the cross-flow fan has not yet been formed owing to an eccentric vortex, which is the remarkable characteristics, occurred in a cross-flow fan. Furthermore, the eccentric vortex, which is difficult to control of the size and position, is the important cause of performance decrease. In this study, experiments are carried out to estimate the similarity of the cross-flow fan with various scales and rotational velocity changes. Pressure coefficients to flow coefficients with various scales of the cross-flow fan are plotted to research the application of the general similarity law of the turbomachinery in the cross-flow fan with Archimedes spital, which is the important factor haying an effect on it.

  • PDF

회전하는 정사각단면의 $90^{\circ}$곡관내 난류유동에 관한 실험적 연구 (Measurement of turbulent flow characteristics of rotating square duct with a $90^{\circ}$ bend)

  • 이건휘;최영돈
    • 대한기계학회논문집
    • /
    • 제19권9호
    • /
    • pp.2223-2236
    • /
    • 1995
  • 0The fields of turbomachinery and electrical generators provide many examples of flow through rotating internal passages. At the practicing Reynolds number, most of the flow motion is three dimensional and highly turbulent. The proper understanding for the characteristics of these turbulent flow is necessary for the design of thermo-fluid machinery of a good efficiency. The flow characteristics in the rotating duct with curvature are very complex in practice due to the curvature and rotational effect of the duct. The understanding of the effect of the curvature on the structure and rotational effect of the duct. The understanding of the effect of the curvature on the structure of turbulence in the curved passage and the characteristics of the flow in a rotating radial straight channel have been well studied separately by many workers. But the combined effects of curvature and rotation on the flow have not been well understood inspite of the importance of the phenomena in the practical design process. In this study, the characteristics of a developing turbulent flow in a square sectioned 90.deg. bend rotating at a constant angular velocity are measured by using hot-wire anemometer to seize the rotational effects on the flow characteristics. As the results of this study, centrifugal forces associated with the curvature of the bend and Coriolis forces and centripetal forces associated with the rotational affect directly both the mean motion and the turbulent fluctuations.