• Title/Summary/Keyword: turbo

Search Result 1,456, Processing Time 0.023 seconds

Acoustic Emission of Heat Treated Compacted Graphite Iron under 873~1173 K (873~1173 K에서 열처리된 강화흑연강(Compacted Graphite Iron, CGI)의 음향방출 특성)

  • Nam, Ki-Woo;Ahn, Byung-Kun;Lee, Soo-Chul
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.5
    • /
    • pp.415-421
    • /
    • 2013
  • CGI is gaining popularity in applications that require either greater strength, or lower weight than cast iron. Recently, compacted graphite iron has been used for diesel engine blocks, turbo housings and exhaust manifolds. This paper were assessed acoustic emission characteristics according to the mechanical properties change of degraded CGI340 during 1-24 hours at 873~1173 K. In results of pencil lead fracture test, the dominant frequency and the velocity of base metal were 97 kHz and 5490 m/sec, respectively. The base metal in a tensile test was obtained relatively high dominant frequency. However, the heat treated materials, the longer the heat treatment time, the higher the heat treatment temperature, were obtained in the area of lower frequencies. This phenomenon appears by long-term use.

A Study on Finned Tube Used in Turbo Refrigerator(III) -for Pressure Drop- (터보 냉동기용 핀 튜브에 관한 연구 (III) -압력 손실에 관하여-)

  • Han, Kyu-Il;Kim, Si-Young;Cho, Dong-Hyun
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.6 no.1
    • /
    • pp.58-76
    • /
    • 1994
  • Heat transfer and pressure drop measurements are made on low integral-fin tubes in turbulent water flow condition. The integral-fin tubes investigated in this paper are nominally 19mm in diameter. Eight tubes have been used with trapezoidally shaped integral-fins having fin density from 748 to 1654 fpm and 10, 30 grooves. Plain tube having same diameter as finned tube is also tested for comparison. Experiments are carried out using R-11 as working fluid. The refrigerant condensates at a saturation state of $30^{\circ}C$ on the outside tube surface cooled by coolant. The amount of noncondensable gases present in the test loop is reduced to a negligible value by repeated purging. For a given heat input to the boiler and given cooling water flow rate, all test data are taken on steady state. The heat transfer loop is used for testing single long tubes and cooling water is pumped from a storage tank through filters and flowmeters to the horizontal test section where it is heated by steam condensing on the outside of the tube. The pressure drop across the test section is measured by means of pressure gauge and manometer. Each tube tested is cleaned with sodium dichromate pickling solution and well rinsed with water prior to installation in the test section. The results obtained in this study is as follows : 1. Based on inside diameter and nominal inside area, heat transfer of finned tube is enhanced up to 4 times as that of a plain tube at constant Reynolds number and up to 2 times at constant pumping power. 2. Friction factors are up to 1.6~2.1 times those of plain tube. 3. At a given Reynolds number, Nusselt number decrease with increasing pitch to diameter. 4. The constant pumping power ratio for low integral-fin tubes increase directly with the effective area to the nominal area ratio, and with the effective area diameter ratio.

  • PDF

A Low Power QPP Interleaver Address Generator Design Using The Periodicity of QPP (QPP 주기성을 이용한 저전력 QPP 인터리버 주소발생기 설계)

  • Lee, Won-Ho;Rim, Chong-Suck
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.12
    • /
    • pp.83-88
    • /
    • 2008
  • The QPP interleaver has been gaining attention since it provides contention-free interleaving functionality for high speed parallel turbo decoders. In this paper we first show that the quadratic term $f_2x^2%K$ of $f(x)=(f_1x+f_2x^2)%K$, the address generating function, is periodic. We then introduce a low-power address generator which utilizes this periodic characteristic. This generator follows the conventional method to generate the interleaving addresses and also to save the quadratic term values during the first half of the first period. The saved values are then reused for generating further interleaved addresses, resulting in reduced number of logical operations. Power consumption is reduced by 27.38% in the design with fixed-K and 5.54% in the design with unfixed-K on average for various values of K, when compared with the traditional designs.

An Improved Decoding Scheme of LCPC Codes (LCPC 부호의 개선된 복호 방식)

  • Cheong, Ho-Young
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.4
    • /
    • pp.430-435
    • /
    • 2018
  • In this paper, an improved decoding scheme for low-complexity parity-check(LCPC) code with small code length is proposed. The LCPC code is less complex than the turbo code or low density parity check(LDPC) code and requires less memory, making it suitable for communication between internet-of-things(IoT) devices. The IoT devices are required to have low complexity due to limited energy and have a low end-to-end delay time. In addition, since the packet length to be transmitted is small and the signal processing capability of the IoT terminal is small, the LCPC coding system should be as simple as possible. The LCPC code can correct all single errors and correct some of the two errors. In this paper, the proposed decoding scheme improves the bit error rate(BER) performance without increasing the complexity by correcting both errors using the soft value of the modulator output stage. As a result of the simulation using the proposed decoding scheme, the code gain of about 1.1 [dB] was obtained at the bit error rate of $10^{-5}$ compared with the existing decoding method.

Surge and Rotating Speed Control for Unmanned Aircraft Turbo-jet Engine (무인 항공기 터보 제트 엔진의 서지와 회전 속도 제어)

  • Jie, Min-Seok;Hong, Gyo-Young;Lee, Kang-Woong
    • Journal of Advanced Navigation Technology
    • /
    • v.10 no.4
    • /
    • pp.319-326
    • /
    • 2006
  • In this paper, a fuzzy inference control system is proposed for a turbojet engine with fuel flow control input only. The proposed control system provides a practical fuel flow control method to prevent surge or flame out during engine acceleration or deceleration. A fuzzy logic is designed to obtain the fast acceleration and deceleration of the engine under the condition that the operating point should stay between the surge line and flame out control line. With using both engine rotating speed error and surge margin as fuzzy input variables, the desired engine rotating speed can be achieved to rapidly follow the engine control line without engine stall. Computer simulation using the MATLAB is realized to prove the proposed control performance to the turbojet engine which is linear modelized using DYGABCD program package.

  • PDF

Predictions of Fouling Phenomena in the Axial Compressor of Gas Turbine Using an Analytic Method (해석적 방법을 이용한 가스터빈 축류 압축기의 파울링 현상 해석)

  • Song, Tae-Won;Kim, Dong-Seop;Kim, Jae-Hwan;Son, Jeong-Rak;No, Seung-Tak
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.12
    • /
    • pp.1721-1729
    • /
    • 2001
  • The performance of gas turbines is decreased as their operating hours increase. Fouling in the axial compressor is one of main reasons for the performance degradation of gas turbine. Airborne particles entering with air at the inlet into compressor adhere to the blade surface and result in the change of the blade shape, which is closely and sensitively related to the compressor performance. It is difficult to exactly analyze the mechanism of the compressor fouling because the growing process of the fouling is very slow and the dimension of the fouled depth on the blade surface is very small compared with blade dimensions. In this study, an improved analytic method to predict the motion of particles in compressor cascades and their deposition onto blade is proposed. Simulations using proposed method and their comparison with field data demonstrate the feasibility of the model. It if found that some important parameters such as chord length, solidity and number of stages, which represent the characteristics of compressor geometry, are closely related to the fouling phenomena. And, the particle sloe and patterns of their distributions are also Important factors to predict the fouling phenomena in the axial compressor of the gas turbine.

Mixed-Flow Pump Impeller-Diffuser Optimization Method by Using CFX and HEEDS (CFX 와 HEEDS 를 이용한 사류펌프 임펠러-디퓨저 최적화방법)

  • Lee, Yong Kab;Park, In Hyung;Shin, Jae Hyok;Kim, Sung;Lee, Kyoung Yong;Choi, Young Seok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.10
    • /
    • pp.831-842
    • /
    • 2015
  • An optimization process was developed to improve mixed-flow pump performance. The optimization process was combined with CFX (a computational fluid dynamics (CFD) code) and HEEDS (an optimization code). CFX is a widely used CFD software for turbo machinery, whereas HEEDS, which uses the SHERPA algorithm, is a newly introduced optimization code. HEEDS can use a large number of optimization variables; thus, it is possible to effectively consider interaction effects. In this paper, an impeller model, which is already optimized with design of experiments (DOE), is used as the base model. The optimization process developed in this paper shows an improved design within an acceptable timeframe.

Experimental Approach to Equalizing the Orifice Method with the Throughput One for the Measurement of TMP Pumping Speed

  • Lim, J.Y.;Kang, S.B.;Shin, J.H.;Koh, D.Y.;Cheung, W.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.18-18
    • /
    • 2010
  • Methods of the characteristics evaluation of turbo-molecular pumps (TMP) are well-defined in the international measurement standards such as ISO, PNEUROP, DIN, JIS, and AVS. The Vacuum Center in the Korea Research Institute of Standards and Science has recently designed, constructed, and established the integrated characteristics evaluation system of TMPs based on the international documents by continuously pursuing and acquiring the reliable international credibility through measurement perfection. The measurement of TMP pumping speed is normally performed with the throughput and orifice methods dependent on the mass flow regions. However, in the UHV range of the molecular flow region, the high uncertainties of the gauges, mass flow rates, and conductance are too critical to precisely accumulate reliable data. With UHV gauges of uncertainties less than 15% and a calculated conductance of the orifice, about 35% of pumping speed uncertainties are experimentally derived in the pressure range of less than $10^{-6}$ mbar. In order to solve the uncertainty problems of pumping speeds in the UHV range, we introduced an SRG with 1% accuracy and a constant volume flow meter (CVFM) to measure the finite mass flow rates down to $10^{-3}$ mbar-L/s with 3% uncertainty for the throughput method. In this way we have performed the measurement of pumping speed down to less than $10^{-6}$ mbar with an uncertainty of 6% for a 1000 L/s TMP. In this article we suggest that the CVFM has an ability to measure the conductance of the orifice experimentally with flowing the known mass through the orifice chambers, so that we may overcome the discontinuity problem encountering during introducing two measurement methods in one pumping speed evaluation sequence.

  • PDF

Variable Iteration Decoding Control Method of Iteration Codes using CRC-code (CRC부호를 이용한 반복복호부호의 반복복호 제어기법)

  • Baek, Seung-Jae;Park, Jin-Soo
    • The KIPS Transactions:PartC
    • /
    • v.11C no.3
    • /
    • pp.353-360
    • /
    • 2004
  • In this Paper, We propose an efficient iteration decoding control method with variable iteration decoding of iteration codes decoding using Cyclic Redundancy Check. As the number of iterations increases, the bit error rate and frame error rate of the decoder decrease and the incremental improvement gradually diminishes. However, when the iteration decoding number is increased, it require much delay and amount of processing time for decoding. Also, It can be observed the error nor that the performance cannot be improved even though increasing of the number of iterations and SNR. So, Suitable number of iterations for stopping criterion is required. we propose variable iteration control method to adapt variation of channel using Frame Error-Check indicator. Therefore, the amount of computation and the number of iterations required for iteration decoding with CRC method can be reduced without sacrificing performance.

Transmission Techniques for Downlink Multi-Antenna MC-CDMA Systems in a Beyond-3G Context

  • Portier Fabrice;Raos Ivana;Silva Adao;Baudais Jean-Yves;Helard Jean-Francois;Gameiro Atilio;Zazo Santiago
    • Journal of Communications and Networks
    • /
    • v.7 no.2
    • /
    • pp.157-170
    • /
    • 2005
  • The combination of multiple antennas and multi-carrier code division multiple-access (MC-CDMA) is a strong candidate for the downlink of the next generation mobile communications. The study of such systems in scenarios that model real-life trans-missions is an additional step towards an optimized achievement. We consider a realistic MIMO channel with two or four transmit antennas and up to two receive antennas, and channel state information (CSI) mismatches. Depending on the mobile terminal (MT) class, its number of antennas or complexity allowed, different data-rates are proposed with turbo-coding and asymptotic spectral efficiencies from 1 to 4.5 bit/s/Hz, using three algorithms developed within the European IST-MATRICE project. These algorithms can be classified according to the degree of CSI at base-station (BS): i) Transmit space-frequency prefiltering based on constrained zero-forcing algorithm with complete CSI at BS; ii) transmit beamforming based on spatial correlation matrix estimation from partial CSI at BS; iii) orthogonal space-time block coding based on Alamouti scheme without CSI at BS. All presented schemes require a reasonable complexity at MT, and are compatible with a single-antenna receiver. A choice between these algorithms is proposed in order to significantly improve the performance of MC-CDMA and to cover the different environments considered for the next generation cellular systems. For beyond-3G, we propose prefiltering for indoor and pedestrian microcell environments, beamforming for suburban macrocells including high-speed train, and space-time coding for urban conditions with moderate to high speeds.