• Title/Summary/Keyword: turbine blade

Search Result 1,271, Processing Time 0.027 seconds

Characteristic of Vibration in Windturbine System (풍력발전시스템의 진동특성)

  • Kim, Jung-Su;Lee, Hyoung-Woo;Park, No-Gill;Kim, Young-Duk;Kim, Soo-Yum;Lee, Dong-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.6
    • /
    • pp.786-795
    • /
    • 2011
  • This paper described the characteristic of vibration in wind turbine system including gearbox housing, gear drive, blade, generator. Especially, in planetary gear set, planet gears are supported by flexible pin. So, in planet gear, to consider not only torsional movement but also lateral movement. And include housing movement, because wind turbine system is supported by mount. To find out the characteristic of vibration, take the excitation source and study campbell diagram in operating range. Results of campbell diagram, resonances are occurred at 81.2HZ, 104.7Hz by 2nd tooth passing frequency. And resonance are also occurred at 264.5HZ, 377Hz, 424.6Hz by 3th tooth passing frequency. From the result, take vibration reduced measures.

A Numerical Analysis of Partial Admission Turbine's Performance for Design Parameters of 3D Supersonic Nozzle (3차원 초음속 노즐 형상 변수에 따른 부분입사형 터빈 성능 특성에 관한 수치적 연구)

  • Shin Bong-Gun;Kwak Young-Jae;Kim Kui-Soon;Kim Jin-Han
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.34-39
    • /
    • 2005
  • In this study, 3-D nozzle shape and the shape of nozzle at exit plane were adopted as design parameter of 3-D supersonic nozzle and numerical analyses for these parameters have been performed to investigate the flow and performance characteristics for design parameters of the turbine. Firstly, comparing results for nozzle shape, rectangular nozzle had less total pressure loss occurred in axial gap and more power by 1.5% than circular nozzle did. Next, comparing the results for the shape of nozzle at exit plane, it is found that the performance of partial admission turbine was largely depended upon the gap between nozzle wall at exit plane and the hub / tip of rotor blade and the length between nozzles.

  • PDF

Production of Bacterial Cellulose by Gluconacetobacter hansenii Using a New Bioreactor Equipped with Centrifugal Impellers (원심 임펠러가 장착된 발효조에서 G. hansenii에 의한 미생물셀룰로오스 생산)

  • Khan, Salman;Shehzad, Omer;Khan, Taous;Ha, Jung Hwan;Park, Joong Kon
    • Korean Chemical Engineering Research
    • /
    • v.47 no.4
    • /
    • pp.506-511
    • /
    • 2009
  • In order to improve the bacterial cellulose(BC) production yield, centrifugal and inclined centrifugal impellers were developed. A 6 flat-blade turbine impeller was used as a control system. The flow pattern in the fermenter and volumetric oxygen transfer coefficient($k_La$) of these fermentation systems were studied. Fermentations were carried out for the production of BC by G. hansenii PJK in a 2-L jar fermenter equipped with new impellers. Liquid medium was circulated from the bottom, through the cylinder of the impeller and to the wall. The volumetric oxygen transfer coefficients, $k_La$, of inclined centrifugal and centrifugal impeller systems at 100 rpm were 23 and 15% of the conventional turbine impeller system, respectively. However, the conversion of microbial cells to cellulose non-producing mutant decreased and this results in the increase in BC production at low rotating speed of impellers.

Analysis of Mechanical Loads During Yawing (풍력터빈 요 운동에 대한 기계적 하중 해석)

  • Nam, Yoon-Su;Choi, Han-Soon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.5
    • /
    • pp.487-495
    • /
    • 2012
  • The yaw control, a major part of the wind turbine, is closely related to the efficiency of electric power production and the mechanical load. The yaw error, which results from the nacelle not being appropriately aligned in the wind direction, not only decreases the power output but also reduces the lifetime of the wind turbine as a result of large fatigue loads. However, the yawing rate cannot be increased indefinitely because of constraints on mechanical loads. This paper investigates the characteristics of an active yaw control system, the basic principle of the system, and mechanical loads around the yaw axis during yawing.

Temperature-Dependency of Tensile Properties of GFRP Composite for Wind Turbine Blades (풍력 발전 블레이드 복합재 GFRP의 인장 특성의 온도 의존성)

  • Huh, Yong-Hak;Kim, Jong-Il;Kim, Dong-Jin;Lee, Gun-Chang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.9
    • /
    • pp.1053-1057
    • /
    • 2012
  • In this study, the temperature-dependency of the tensile properties of a glass fiber reinforced plastic (GFRP) used in wind turbine blades was examined. The tensile strength, elastic modulus, and Poisson's ratio of the tensile specimen manufactured from uniaxial ($0^{\circ}$) and triaxial ($0/{\pm}45^{\circ}$) laminate composite plates were measured at four different testing temperatures-room temperature, $-30^{\circ}C$, $-50^{\circ}C$, and $60^{\circ}C$. It was found that the tensile strengths and elastic moduli of the uniaxial laminates were greater than those of the triaxial laminates over the testing temperature range. The tensile strength of the two laminates was significantly dependent on the testing temperature, while the dependency of the elastic modulus on the temperature was insignificant. Furthermore, it could be considered that the Poisson's ratio changed slightly with a change in the testing temperature.

Analysis of Thermal Oxide Behavior with Isothermal Degradation of TBC Systems Applied to Single Crystal Superalloy (단결정 초내열합금에 적용된 열차폐코팅의 등온열화에 따른 산화물 거동분석)

  • Kim, K.;Wee, S.;Choi, J.;Kim, D.;Song, H.;Lee, J.;Seok, C.S.;Chung, E.S.;Kwon, S.H.
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.4
    • /
    • pp.1-5
    • /
    • 2019
  • In the field of combined cycle power generation, thermal barrier coating(TBC) protects the super-heat-resistant alloy, which forms the core component of the gas turbine, from high temperature exposure. As the turbine inlet temperature(TIT) increases, TBC is more important and durability performance is also important when considering maintenance cost and safety. Therefore, studies have been made on the fabrication method of TBC and super-heat-resistant alloy in order to improve the performance of the TBC. In recent years, due to excellent properties such as high temperature creep resistance and high temperature strength, turbine blade material have been replaced by a single crystal superalloy, however there is a lack of research on TBC applied to single crystal superalloy. In this study, to understand the isothermal degradation performance of the TBC applied to the single crystal superalloy, isothermal exposure test was conducted at various temperature to derive the delamination life. The growth curve of thermally grown oxide(TGO) layer was predicted to evaluate the isothermal degradation performance. Also, microstructural analysis was performed by scanning electron microscope(SEM) and energy dispersive X-ray spectroscopy (EDS) to determine the effect of mixed oxide formation on the delamination life.

Performance of a 3D pendulum tuned mass damper in offshore wind turbines under multiple hazards and system variations

  • Sun, Chao;Jahangiri, Vahid;Sun, Hui
    • Smart Structures and Systems
    • /
    • v.24 no.1
    • /
    • pp.53-65
    • /
    • 2019
  • Misaligned wind-wave and seismic loading render offshore wind turbines suffering from excessive bi-directional vibration. However, most of existing research in this field focused on unidirectional vibration mitigation, which is insufficient for research and real application. Based on the authors' previous work (Sun and Jahangiri 2018), the present study uses a three dimensional pendulum tuned mass damper (3d-PTMD) to mitigate the nacelle structural response in the fore-aft and side-side directions under wind, wave and near-fault ground motions. An analytical model of the offshore wind turbine coupled with the 3d-PTMD is established wherein the interaction between the blades and the tower is modelled. Aerodynamic loading is computed using the Blade Element Momentum (BEM) method where the Prandtl's tip loss factor and the Glauert correction are considered. Wave loading is computed using Morison equation in collaboration with the strip theory. Performance of the 3d-PTMD is examined on a National Renewable Energy Lab (NREL) monopile 5 MW baseline wind turbine under misaligned wind-wave and near-fault ground motions. The robustness of the mitigation performance of the 3d-PTMD under system variations is studied. Dual linear TMDs are used for comparison. Research results show that the 3d-PTMD responds more rapidly and provides better mitigation of the bi-directional response caused by misaligned wind, wave and near-fault ground motions. Under system variations, the 3d-PTMD is found to be more robust than the dual linear TMDs to overcome the detuning effect. Moreover, the 3d-PTMD with a mass ratio of 2% can mitigate the short-term fatigue damage of the offshore wind turbine tower by up to 90%.

Turbine Case Containment Capability Evaluation Using Finite Element Analysis (유한요소해석을 이용한 터빈 케이스의 컨테인먼트 성능 평가)

  • Jun-woo Baek;Sang-woo Kim;Soo-yong Lee
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.5
    • /
    • pp.19-27
    • /
    • 2023
  • In this study, we used finite element analysis to conduct a containment capability evaluation of a turbine case. When analyzing the impact behavior of structures subjected to impact loads, it is important to consider the strain rate, as it affects the increase in flow stress. Therefore, we applied three material models (Cowper-Symonds, Johnson-Cook, and Modified Johnson-Cook) for the impact analysis. To validate these material models, we performed an impact test on an aluminum 6061 plate. By comparing and analyzing the experimental and analytical results, we determined that the Modified Johnson-Cook material model exhibited the least error. As a result, we applied this material model to evaluate the containment capability of the turbine case. This evaluation involved determining the occurrence of penetration, as well as the stress and strain induced at the collision area due to the initial velocity of the blade.

Experimental Study on the Performance of a Two-Stage Vortex Turbine with a Free Water Surface (자유수면을 갖는 2단 와류 수차의 성능에 관한 실험적 연구)

  • Jong-Woo Kim;In-Ho Choi;Gi-Soo Chung
    • Journal of Wetlands Research
    • /
    • v.26 no.3
    • /
    • pp.236-244
    • /
    • 2024
  • This research was conducted to determine the performance of a two-stage vortex turbine with a free water surface. The performance of the two-stage runner was studied by varying the flow rate and the position of the runner in the cylindrical vortex chamber. The experimental results showed that the performance parameters such as torque, voltage, current, and rotational speed increased with increasing flow rate. The runner depth ratio has a significant impact on the performance of the two-stage vortex turbine. The highest power generated by the two-stage runner occurred in the range of 0.054 to 0.162 runner depth ratio near the orifice. The power output of the two-stage runner was higher than that of the single runner due to more vortex and blade contact area in the flow range of 7.2 to 7.7 L/s.

Wind Estimation Power Control using Wind Turbine Power and Rotor speed (풍력터빈의 출력과 회전속도를 이용한 풍속예측 출력제어)

  • Ko, Seung-Youn;Kim, Ho-Chan;Huh, Jong-Chul;Kang, Min-Jae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.4
    • /
    • pp.92-99
    • /
    • 2016
  • A wind turbine is controlled for the purpose of obtaining the maximum power below its rated wind speed. Among the methods of obtaining the maximum power, TSR (Tip Speed Ratio) optimal control and P&O (Perturbation and Observation) control are widely used. The P&O control algorithm using the turbine power and rotational speed is simple, but its slow response is a weak point. Whereas TSR control's response is fast, it requires the precise wind speed. A method of measuring or estimating the wind speed is used to obtain a precise value. However, estimation methods are mostly used, because it is difficult to avoid the blade interference when measuring the wind speed near the blades. Neural networks and various numerical methods have been applied for estimating the wind speed, because it involves an inverse problem. However, estimating the wind speed is still a difficult problem, even with these methods. In this paper, a new method is introduced to estimate the wind speed in the wind-power graph by using the turbine power and rotational speed. Matlab/Simulink is used to confirm that the proposed method can estimate the wind speed properly to obtain the maximum power.