• Title/Summary/Keyword: tunnel support pressure

Search Result 104, Processing Time 0.027 seconds

Effect of trailing-edge modification over aerodynamic characteristics of NACA 0020 airfoil

  • Ethiraj, Livya;Pillai, Subramania Nadaraja
    • Wind and Structures
    • /
    • v.33 no.6
    • /
    • pp.463-470
    • /
    • 2021
  • This study investigates the aerodynamic characteristics of NACA series airfoil by altering the trailing edge in the form of extended and serrated sections. This contemporary advent examined NACA 0020 airfoil experimentally at the angle of attack ranging from 0° to 45° and for the Reynolds number of 2.46 × 105. To figure out the flow behaviour, the standard average pressure distribution over the airfoil surface is estimated with 50 pressure taps. The time series surface pressure is recorded for 700 Hz of sampling frequency. The extended trailing edge of 0.1 c, 0.2 c and 0.3 c are attached to the base airfoil. Further, the triangular serration is introduced with the base length of 2 cm, 4 cm and 6 cm. Each base length with three different amplitudes of 0.1 c, 0.2 c and 0.3 c were designed and equipped with the baseline case at the trailing edge and tested. The aerodynamic force coefficient, as well as pressure coefficient are presented. The obtained data advises that modification in the trailing edge will reflect the aerodynamic characteristics and the flow behaviour over the section of a wing. Resultantly, the extended trailing edge as a thin elongated surface attached to a base airfoil without revising the main airfoil favors good lift increment. The serrated trailing edge acts as a flow control device by altering the flow pattern results to delay the stall phenomenon. Besides it, improves lift co-efficient with less amount of additional drag. This extended and serrated trailing edge approach can support for designing the future smart airfoil.

A Study on the Supporting Effect of a Spiral Bolt as a Support System (Spiral bolt의 지보효과에 관한 연구)

  • Cho, Young-Dong;Kang, Choo-Won;Kim, Jae-Woong
    • Tunnel and Underground Space
    • /
    • v.20 no.5
    • /
    • pp.332-343
    • /
    • 2010
  • This study aims to evaluate the supporting effect of a spiral bolt that is superior to a rock bolt in terms of constructability, stability, environmental and economic aspects as a support system. This study thus analyzed the mechanical properties of a rock bolt which is widely used as a support and a spiral bolt. In addition, laboratory pull-out tests were conducted for the evaluation of properties of the supports such as displacement, pull-out load, confining pressure etc. Moreover, the differences between a rock bolt and a spiral bolt were drawn by comparing the two results of laboratory pull-out tests and in-situ pull-out tests. Then, the differences of the supporting effect of the two supports were analysed by comparing the results of the two pull-out tests with a numerical analysis using FLAC3D.

Influence of the Fire on Emergency Evacuation Support System (대공간용 비상피난지원 시스템에 화재가 미치는 영향 분석)

  • Kim, JiTae;Sung, Kun Hyuk;Park, Won Hee;Lee, Duck Hee;Woo, Jun You;Ro, Kyoung-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.626-631
    • /
    • 2018
  • An emergency evacuation support system is used to maintain evacuation routes by pressurizing a space inside screens. In cases of fire, it is important to understand the thermal distributions in the tunnel for preventing system failure. In this study, we numerically investigated the effect of fire on an emergency evacuation support system in a large fabric store with some fire scenarios with different combustibles. The critical temperature for system failures was assumed to be $200^{\circ}C$. As a result, the highest temperature was predicted in the ceiling part due to the effect of a ceiling jet, and the fire safety of the screen was secured at distances of 20 to 30 m according to the heat release rate. To prevent the inflow of smoke into the system, it is necessary to maintain more than 5 Pa if positive pressure inside the smoke screen. The results of this study could be useful for designing an emergency evacuation support system.

A Thermo-Hydro-Mechanical Coupled Numerical Simulation on the FE Experiment: Step 1 Simulation in Task C of DECOVALEX-2023 (Mont Terri FE 실험 대상 열-수리-역학 복합거동 수치해석: DECOVALEX-2023 Task C 내 Step 1 수치해석 연구)

  • Taehyun, Kim;Chan-Hee, Park;Changsoo, Lee;Jin-Seop, Kim
    • Tunnel and Underground Space
    • /
    • v.32 no.6
    • /
    • pp.518-529
    • /
    • 2022
  • In Task C of the DECOVALEX-2023 project, nine institutes from six nations are developing their numerical codes to simulate thermo-hydro-mechanical coupled behavior for the FE experiment performed at Mont Terri underground rock laboratory, Switzerland. Currently, Step 1 for comparing the simulation results to field data is the ongoing stage, and we used the OGS-FLAC simulator for a series of numerical simulations. As a result, temperature increase depending on the heating hysteresis was well simulated, and saturation variation in the bentonite depending on phase change was observed. However, due to the suction overestimation, relative humidity and temperature change in the bentonite and the pressure variation in the Opalinus clay showed a difference compared to the field data. From the observation, it is confirmed that the effect of the bentonite capillary pressure is dominant to the flow analysis in the disposal system. We further plan to draw improved results considering tunnel support material and accurate initial water pressure distribution. Additionally, the thermal, hydrological, and mechanical anisotropy of the Opalinus clay was well simulated. From the simulation results, we confirmed the applicability of the OGS-FLAC simulator in the disposal system analysis.

A Study on Secondary Lining Design of Tunnels Using Ground-Lining Interaction Model (지반-라이닝 상호작용 모델을 이용한 터널 2차라이닝 설계에 관한 연구)

  • Chang, Seok-Bue;Huh, Do-Hak;Moon, Hyun-Koo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.8 no.4
    • /
    • pp.365-375
    • /
    • 2006
  • The structural analysis for the secondary lining of tunnels is generally performed by a frame analysis model. This model requires a ground loosening load estimated by some empirical methods, but the load is likely to be subjective and too large. The ground load acting on the secondary lining is due to the loss of the supporting function of the first support members such as shotcrete and rockbolts. Therefore, the equilibrium condition of the ground and the first support members should be considered to estimate the ground load acting on the secondary lining. Ground-lining interaction model, shortly GLI model, is developed on the basis of the concept that the secondary lining supports the ground deformation triggered by the loss of the support capacity of the first support members. Accordingly, the GLI model can take into account the ground load reflecting effectively not only the complex ground conditions but the installed conditions of the first support members. The load acting on the secondary lining besides the ground load includes the groundwater pressure and earthquake load. For the structural reinforcement of the secondary lining based on the ultimate strength design method, the factored load and various load combination should be considered. Since the GLI model has difficulty in dealing with the factored load, introduced in this study is the superposition principle in which the section moment and force of the secondary lining estimated for individual loads are multiplied by the load factors. Finally, the design method of the secondary lining using the GLI model is applied to the case of a shallow subway tunnel.

A preliminary study for numerical and analytical evaluation of surface settlement due to EPB shield TBM excavation (토압식 쉴드 TBM 굴착에 따른 지반침하 거동 평가에 관한 해석적 기초연구)

  • An, Jun-Beom;Kang, Seok-Jun;Kim, Jung Joo;Kim, Kyoung Yul;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.3
    • /
    • pp.183-198
    • /
    • 2021
  • The EPB (Earth Pressure Balanced) shield TBM method restrains the ground deformation through continuous excavation and support. Still, the significant surface settlement occurs due to the ground conditions, tunnel dimensions, and construction conditions. Therefore, it is necessary to clarify the settlement behavior with its influence factors and evaluate the possible settlement during construction. In this study, the analytical model of surface settlement based on the influence factors and their mechanisms were proposed. Then, the parametric study for controllable factors during excavation was conducted by numerical method. Through the numerical analysis, the settlement behavior according to the construction conditions was quantitatively derived. Then, the qualitative trend according to the ground conditions was visualized by coupling the numerical results with the analytical model of settlement. Based on the results of this study, it is expected to contribute to the derivation of the settlement prediction algorithm for EPB shield TBM excavation.

Development of an Improved Point Load Apparatus (개량형 점하중강도시험기의 개발)

  • Kim, Yong-Phil;Um, Jeong-Gi
    • Tunnel and Underground Space
    • /
    • v.19 no.6
    • /
    • pp.473-478
    • /
    • 2009
  • The accuracy of point load apparatus is depend on point to point coaxial fitting. Also, the estimation of applied point load using the pressure gauge frequently lead to erroneous results. An improved point load apparatus has been developed in this study by mounting linear bearing on polished support rod, and eccentric error of point to point axis has been sustained less than 0.1 mm even under series of extreme work load conditions. Two digital displacement gauges are attached to measure the distance from point to point with sample specimen. A load cell mounted at the end of upper conical platen measure the applied net load on sample instead of preassure gauge. Total of 107 point load tests has been achieved to assure the quality and performance of developed apparatus. This exercise turned out to be successful.

Across-wind excitation mechanism for interference of twin tall buildings in tandem arrangement

  • Zu, G.B.;Lam, K.M.
    • Wind and Structures
    • /
    • v.26 no.6
    • /
    • pp.397-413
    • /
    • 2018
  • Excitation mechanism of interference effect between two tall buildings is investigated with wind tunnel experiments. Synchronized building surface pressure and flow field measurements by particle image velocimetry (PIV) are conducted to explore the relationship between the disturbed wind flow field and the consequent wind load modification for twin buildings in tandem. This reveals evident excitation mechanisms for the fluctuating across-wind loads on the buildings. For small distance (X/D < 3) between two buildings, the disturbed flow pattern of impaired vortex shedding is observed and the fluctuating across-wind load on the downstream building decreases. For larger distance ($X/D{\geq}3$), strong correlation between the across-wind load of the downstream building and the oscillation of the wake of the upstream building is found. By further analysis with conditional sampling and phase-averaged techniques, the coherent flow structures in the building gap are clearly observed and the wake oscillation of the upstream building is confirmed to be the reason of the magnified across-wind force on the downstream building. For efficient PIV measurement, the experiments use a square-section high-rise building model with geometry scale smaller than the usual value. Interference factors for all three components of wind loads on the building models being surrounded by another identical building with various configurations are measured and compared with those from previous studies made at large geometry scale. The results support that for interference effect between buildings with sharp corners, the length scale effect plays a minor role provided that the minimum Reynolds number requirement is met.

Elasto-plastic Analysis and In-situ Measurement on Rock Behaviors with Stepwise Excavation of the Steep Soft Seam at a Great Depth (심부 급경사 연약층의 채굴 진행에 따른 주변 암반 거동의 탄소성 해석 및 현장계측)

  • 정소걸;신중호
    • Tunnel and Underground Space
    • /
    • v.14 no.4
    • /
    • pp.295-303
    • /
    • 2004
  • For the deep underground excavation site with the geological complexity of soft seam and hard rock, the numerical analysis and in-situ measurement on the behaviors of roadway and surrounding rock according to stepwise excavation of the steep soft seam are carried out. The strata behavior is modeled using elasto-plastic FEM considering the empirical failure criteria of Hoek & Brown and the strain-softening model. Hydraulic pressure capsule, MPBX and tape extensometer are installed around the roadway for the in-situ measurement of rock stress and deformation. Despite the complexity of geology and excavation procedure, the elasto-plastic analysis considering the empirical failure criteria of Hoek & Brown and the strain-softening model shows good agreement with the in-situ measurement. Comparison of numerical modeling with in-situ measurement enables to predict the behaviors of the roadway and to obtain design parameters for the excavation and support at depth.

A Correlation Analysis on Earth Pressure and Subgrade Stiffness in Bridge Abutment Transition Zone (철도 교량접속부의 토압과 노반강도와의 상관관계)

  • Kim, Jin-Hwan;Cho, Kook-Hwan
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.5
    • /
    • pp.647-655
    • /
    • 2016
  • The construction of high speed railways and improvement projects of for conventional railways require straight railway lines of railway, which leads to an increase of bridge and tunnel construction. Transition zones in railways means that the track support stiffness is variedvaries in over short ranges. Sspecial attention is required in theose transition zones since because instability of train running in train and irregularities of track irregularities are can frequently occurred. Typical transition zones are between bridges and earthworks and between tunnels and earthworks. On In a transition zone, a bridge abutment transition zone has many problems in with various causes. In this paper, fundamental problems of bridge abutment transition zones is are analyzed to enhance the understanding about of bridge abutment transition zones. Suggestions for improving problems in the transition zones are proposed.