• Title/Summary/Keyword: tunnel standard support pattern

Search Result 12, Processing Time 0.018 seconds

A Study on the Uncertainty of the Classification of Rook Mass Rating (RMR 암반분류법의 불확정성에 관한 연구)

  • Lee Sang-Eun;Jun Sung-Kwon;Kang Sang-Jin
    • Tunnel and Underground Space
    • /
    • v.15 no.6 s.59
    • /
    • pp.441-451
    • /
    • 2005
  • It is the unavoidable problem that the RMR rock classification method has the uncertainty resulted from uncertain definition of measured value in RMR grade table, hence in this paper, the estimation of probability density function$(p{\cdot}d{\cdot}f)$ graph with the evaluation of continuos RMR and the Monte Carlo Simulation and statistic reasoning were carried out to evaluate the uncertainty quantitatively. Also, the modified RMR rock classification table was presented in order to apply the uncertainty of RMR to the practice, and then the design process of standard support pattern and the tunnel support material was proposed.

Effect of trailing-edge modification over aerodynamic characteristics of NACA 0020 airfoil

  • Ethiraj, Livya;Pillai, Subramania Nadaraja
    • Wind and Structures
    • /
    • v.33 no.6
    • /
    • pp.463-470
    • /
    • 2021
  • This study investigates the aerodynamic characteristics of NACA series airfoil by altering the trailing edge in the form of extended and serrated sections. This contemporary advent examined NACA 0020 airfoil experimentally at the angle of attack ranging from 0° to 45° and for the Reynolds number of 2.46 × 105. To figure out the flow behaviour, the standard average pressure distribution over the airfoil surface is estimated with 50 pressure taps. The time series surface pressure is recorded for 700 Hz of sampling frequency. The extended trailing edge of 0.1 c, 0.2 c and 0.3 c are attached to the base airfoil. Further, the triangular serration is introduced with the base length of 2 cm, 4 cm and 6 cm. Each base length with three different amplitudes of 0.1 c, 0.2 c and 0.3 c were designed and equipped with the baseline case at the trailing edge and tested. The aerodynamic force coefficient, as well as pressure coefficient are presented. The obtained data advises that modification in the trailing edge will reflect the aerodynamic characteristics and the flow behaviour over the section of a wing. Resultantly, the extended trailing edge as a thin elongated surface attached to a base airfoil without revising the main airfoil favors good lift increment. The serrated trailing edge acts as a flow control device by altering the flow pattern results to delay the stall phenomenon. Besides it, improves lift co-efficient with less amount of additional drag. This extended and serrated trailing edge approach can support for designing the future smart airfoil.