• Title/Summary/Keyword: tunnel exit

Search Result 138, Processing Time 0.024 seconds

Flow Field and Exhaust Gas Recrirculation around a Tunnel Entrance and Exit (터널 입출구 주위의 유동장과 배기가스 재순환)

  • 서용권;이창우;최윤환
    • Tunnel and Underground Space
    • /
    • v.6 no.3
    • /
    • pp.245-249
    • /
    • 1996
  • In this study, the flow field and the recirculation phenomena are investigated numerically for the model around a tunnel entrance and exit. It turns out that the air entering to the tunnel entrance comes mostly from the upper region of the entrance implying that maintaining the air clear in that region is important for the inside-tunnel ventilation. We also found that the recirculation of the exhaust gas from the exit to the entrance has a maximum effect when the flow velocity at the exit is somewhat lower than that of the entrance.

  • PDF

Study on Impulse Wave Radiated from High Speed Railway Tunnel Exit with Baffle Plate (배플 플레이트를 가지는 고속철도 터널 출구로부터 방사하는 미기압파에 관한 연구)

  • Kim, Tae Ho;Kim, Dong Hyeon;Kim, Heuy Dong
    • Journal of the Korean Society of Visualization
    • /
    • v.16 no.3
    • /
    • pp.8-15
    • /
    • 2018
  • Recently, as the high speed railway becomes more common, new environmental problems such as noise around tunnels are appearing. When a high speed train enters a tunnel, a compression wave in the tunnel is generated and propagated toward the tunnel exit at a sonic speed. When it reaches the tunnel exit, a part of compression wave radiates as a pulse typed impulse wave to the outside of tunnel. The impulse wave has an explosive noise. When the impulse wave is propagated around a village, it induces a serious noise or other problems to the resident. In order to solve these engineering problems, it is important to investigate the radiation characteristics of the impulse wave radiated from the tunnel exit. In this study, the effect of the length and angle of the baffle plate at the tunnel exit on the impulse wave radiated from the tunnel exit was investigated by numerical analysis. As a results, the baffle plate greatly affected the propagation of impulse wave.

Numerical Study of Tunnel Hood to Reduce Micro-Pressure Wave on Conventional Railways (기존선 터널 출구 미기압파 저감을 위한 터널 후드의 수치 해석적 연구)

  • Kim Byeong-Yeol;Kwon Hyeok-Bin;Yun Su-Hwan;Ku Yo-Cheon;Ko Tae-Hwan;Lee Dong-Ho
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.6 s.31
    • /
    • pp.513-519
    • /
    • 2005
  • The Korean Tilting Train eXpress may produced a strong micro-pressure wave in tunnel exit because of large train/tunnel area ration of conventional railways. This micro-pressure wave causes an impulsive noise which is a serious environmental noise pollution near tunnel exit. Tunnel hood can be the method of reducing the micro-pressure wave in tunnel exit. Therefore, parametric studies for tunnel hood are performed with respect to the hood length and size to investigate the effects of the tunnel hood. Also, axi-symmetric unsteady compressible flow solver was used to analyze train-tunnel relative motion. According to the result of numerical analysis, the maximum micro-pressure wave in tunnel exit is reduced by 56% throughout the hood establishment on conventional railways.

Analysis of temperature distribution per length in highway tunnel (공용중인 고속도로 터널내 연장별 온도 조사 분석)

  • Hong, Seung-Ho;Lee, Kyung-Ha;Kim, Nag-Young;Yun, Kyong-Ku
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.7 no.3
    • /
    • pp.259-267
    • /
    • 2005
  • This paper analyzed characteristic of temperature change as well as bottom of tunnel with thermometer according to tunnel length and region during one year. And it measured temperature distribution near tunnel portal. In the paper it was known that tunnel entrance and exit have different characteristic temperature distribution in accordiance with bottom of tunnel per tunnel length. Temperature of tunnel changed from tunnel exit to fifty meter and distribution of tunnel temperature was established uniform regardless of tunnel length. But temperature distribution of tunnel changed in tunnel entrance differ from tunnel exit in the location of one hundred twenty five meter and one hundred fifty meter. Cold air inflowed from tunnel entrance have influenced with the location of one hundred twenty five meter and one hundred fifty meter.

  • PDF

Numerical analysis on stability of express railway tunnel portal

  • Zhou, Xiaojun;Hu, Hongyun;Jiang, Bo;Zhou, Yuefeng;Zhu, Yong
    • Structural Engineering and Mechanics
    • /
    • v.57 no.1
    • /
    • pp.1-20
    • /
    • 2016
  • On the basis of the geological conditions of high and steep mountainous slope on which an exit portal of an express railway tunnel with a bridge-tunnel combination is to be built, the composite structure of the exit portal with a bridge abutment of the bridge-tunnel combination is presented and the stability of the slope on which the express railway portal is to be built is analyzed using three dimensional (3D) numerical simulation in the paper. Comparison of the practicability for the reinforcement of slope with in-situ bored piles and diaphragm walls are performed so as to enhance the stability of the high and steep slope. The safety factor of the slope due to rockmass excavation both inside the exit portal and beneath the bridge abutment of the bridge-tunnel combination has been also derived using strength reduction technique. The obtained results show that post tunnel portal is a preferred structure to fit high and steep slope, and the surrounding rock around the exit portal of the tunnel on the high and steep mountainous slope remains stable when rockmass is excavated both from the inside of the exit portal and underneath the bridge abutment after the slope is reinforced with both bored piles and diaphragm walls. The stability of the high and steep slope is principally dominated by the shear stress state of the rockmass at the toe of the slope; the procedure of excavating rockmass in the foundation pit of the bridge abutment does not obviously affect the slope stability. In-situ bored piles are more effective in controlling the deformation of the abutment foundation pit in comparison with diaphragm walls and are used as a preferred retaining structure to uphold the stability of slope in respect of the lesser time, easier procedure and lower cost in the construction of the exit portal with bridge-tunnel combination on the high and steep mountainous slope. The results obtained from the numerical analysis in the paper can be used to guide the structural design and construction of express railway tunnel portal with bridge-tunnel combination on high and abrupt mountainous slope under similar situations.

Characteristics Method Analysis of Wind Pressure of Train Running in Tunnel (터널을 주행하는 열차의 풍압에 대한 특성해법 해석)

  • Nam, Seong-Won;Kwon, Hyeok-Bin;Yun, Su-Hwan
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.5
    • /
    • pp.436-441
    • /
    • 2012
  • Pressure waves are generated and propagate in tunnel when train enters a tunnel with high speed. Compression wave due to the entry of train head propagates along the tunnel and is reflected at tunnel exit as expansion wave. While expansion wave due to the entry of train tail propagates along the tunnel and is reflected at tunnel exit as compression wave. These pressure waves are repeatedly propagated and reflected at tunnel entrance and exit. Severe pressure change per second causes ear-discomfort for passengers in cabin and micro pressure wave around tunnel exit. It is necessary to analyze the transient pressure phenomena in tunnel qualitatively and quantitatively, because pressure change rate is considered as one of major design parameters for an optimal tunnel cross sectional area and the repeated fatigue force on car body. In this study, we developed the characteristics method analysis based on fixed mesh system and compared with the results of real train test. The results of simulation agreed with that of experiment.

Analysis for Characteristics Method on Wind Pressure of Trains Crossing in Tunnel (터널내 교행 열차의 풍압에 대한 특성법 해석)

  • Nam, Seong-Won
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.6
    • /
    • pp.454-459
    • /
    • 2013
  • Pressure waves are generated and propagate in a tunnel when train enters tunnel high speed. A compression wave due to the entry of train head propagates along the tunnel and is reflected at tunnel exit as an expansion wave. An expansion wave due to the entry of the train tail propagates along the tunnel and is reflected at tunnel exit as a compression wave. These pressure waves are repeatedly propagated and reflected at the tunnel entrance and exit. Severe pressure changes causes ear-discomfort for passengers in the cabin and micro pressure waves around the tunnel exit. It is necessary to analyze the transient pressure phenomena in tunnels qualitatively and quantitatively, because pressure change rate is considered as one of the major design parameters for optimal tunnel cross sectional area and repeated fatigue force on car body. In this study, we developed a characteristics method based on a fixed mesh system and boundary conditions for crossing trains and analyzed this system using an X-t diagram. The results of the simulation show that offsetting of pressure waves occurs for special entry conditions of a crossing train.

Experimental study on the alleviation of micro-pressure waves radiated from the tunnel exit with the slanted portals on the high-speed train operations of 300km/h (300km/h급 고속철도의 터널 미기압파 저감을 위한 경사갱구의 실험적 연구)

  • Kim, Dong-Hyeon;Min, Dong-Ho
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.841-846
    • /
    • 2000
  • The compression wave produced when a high-speed train enters a tunnel propagates along the tunnel ahead of the train. The micro pressure wave related to He compression wave is a special physics Phenomena created by high-speed train-tunnel interfaces. On this work, the method for reducing the micro pressure wave is to delay the gradient of the compression wave by using aerodynamic structures. The objective of this paper is to determine the optimum angle of the slanted portal using the moving model rig. According to the results of the present study, the maximum value of micro pressure wave is reduced by 19.2% fer the $45^{\circ}$ slanted portal installed at the entrance of the tunnel and reduced by 41.9% far the $45^{\circ}$ slanted portals at the entrance and exit of the tunnel. Also it is reduced by 34.6% for the $30^{\circ}$ slanted portals installed at the entrance and exit of the tunnel.

  • PDF

Experimental study on the alleviation of micro-pressure waves radiated from the tunnel exit with the slit hoods on the high-speed train operations of 300km/h (300km/h급 고속철도의 터널 미기압파 저감을 위한 슬릿후드의 실험적 연구)

  • Kim, Dong-Hyeon;Min, Dong-Ho
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.619-624
    • /
    • 2000
  • The purpose of present study is to investigate for reducing micro pressure waves generated according to train speeds $(240km/h{\sim}380km/h)$ through tunnels with countermeasures as followings; the hood configuration in tunnel entrance. We developed hoods for tunnel of 0.5 km length in the condition of tunnel cross-section area of $107m^2$ on the slab track. According to the results the maximum micro-pressure wave is reduced by 41.2% for the slit hood installed at the entrance of the tunnel and reduced by 47.7% for the slit hood installed at the entrance of the tunnel and the $45^{\circ}$ slanted portal at the exit of the tunnel

  • PDF

The Reduced Model Test for the Determination of Ventilation Velocity to Prevent Backflow in Uni-directional Road Tunnel during a Fire Disaster (일방향 도로터널내 화재 발생시 역류를 막는 환기속도결정에 관한 축소모형실험)

  • 유영일;이희근
    • Tunnel and Underground Space
    • /
    • v.8 no.2
    • /
    • pp.107-117
    • /
    • 1998
  • In the case of a fire disaster in a uni-directional road tunnel, it is important to determine the critical ventilation velocity to prevent the backflow travelling toward the tunnel exit where vehicles are stopped. The critical ventilation velocity is horizontal velocity to prevent hot smoke from moving toward the tunnel exit. According to Froude modelling, the model tunnel whcih was 300mm in diameter and 21 m in length was made of acryl tubes. Inner section of acryl tubes was clothed with polycarbonate. 1/20 scaled model vehicles were installed to simulate the situation that vehicles are stopped in the tunnel exit. Methanol in a pool type burner was burned in the middle of tunnel to simulate a fire hazard. In this study, the basis of determining the critical ventilation velocity is the ventilation flow rate that is able to maintain the allowable CO concentration in the tunnel section. We assumed that the allowable CO concentration was backflow dispersion index. Futhermore, We intended to find out CO distribution and temperature distribution according as we changed ventilation velocity. The results of this study were that no backflow happened when ventilation velocity was 0.52 m/s in the case of 5.75 kW. If we adapt these results of a fire disaster releasing 10MW heat capacity in real tunnel which is 400m in length, no backflow happens when ventilation velocity is 2.31m/s. After we figured out dimensionless heat release rate and dimensionless ventilation velocity of model test and those of real test to verify experimental correctness, we tried to find out correlation between experimental results of model tunnel and those of real tunnel.

  • PDF