• Title/Summary/Keyword: tunnel cross-section

Search Result 209, Processing Time 0.02 seconds

Identification of acrosswind load effects on tall slender structures

  • Jae-Seung Hwang;Dae-Kun Kwon;Jungtae Noh;Ahsan Kareem
    • Wind and Structures
    • /
    • v.36 no.4
    • /
    • pp.221-236
    • /
    • 2023
  • The lateral component of turbulence and the vortices shed in the wake of a structure result in introducing dynamic wind load in the acrosswind direction and the resulting level of motion is typically larger than the corresponding alongwind motion for a dynamically sensitive structure. The underlying source mechanisms of the acrosswind load may be classified into motion-induced, buffeting, and Strouhal components. This study proposes a frequency domain framework to decompose the overall load into these components based on output-only measurements from wind tunnel experiments or full-scale measurements. First, the total acrosswind load is identified based on measured acceleration response by solving the inverse problem using the Kalman filter technique. The decomposition of the combined load is then performed by modeling each load component in terms of a Bayesian filtering scheme. More specifically, the decomposition and the estimation of the model parameters are accomplished using the unscented Kalman filter in the frequency domain. An aeroelastic wind tunnel experiment involving a tall circular cylinder was carried out for the validation of the proposed framework. The contribution of each load component to the acrosswind response is assessed by re-analyzing the system with the decomposed components. Through comparison of the measured and the re-analyzed response, it is demonstrated that the proposed framework effectively decomposes the total acrosswind load into components and sheds light on the overall underlying mechanism of the acrosswind load and attendant structural response. The delineation of these load components and their subsequent modeling and control may become increasingly important as tall slender buildings of the prismatic cross-section that are highly sensitive to the acrosswind load effects are increasingly being built in major metropolises.

Fundamental study on enlargement method of existing subway tunnel during operation for sidetrack construction (부본선 건설을 위한 기존 지하철 터널의 운영 중 확폭 방안에 대한 기초연구)

  • Lee, Hyobum;Koh, Sung-Yil;Jun, Jonghun;Yoon, Hee Taek;Yi, Na Hyun;Choi, Hangseok
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.1
    • /
    • pp.59-76
    • /
    • 2020
  • As a continuous increase in demand for the transportation infrastructure in the metropolitan area, the renovation of existing metropolitan and urban railway lines for the rapid transport system requires the construction of sidetrack that can operate local and express trains simultaneously. However, the construction of sidetrack after stopping the operation of the existing subway line causes a lot of economic losses, therefore it is essential to study the tunnel enlargement scheme during the operation of the existing subway tunnel. Accordingly, in this paper, basic research on the enlargement plan of the existing subway tunnel was carried out for the renovation of the existing subway line. In order to investigate the method for the sidetrack construction, the Government Complex Gwacheon station on the Gwacheon line of subway line 4 was selected as a virtual research station. Subsequently, four construction plans including tunnel cross-sectional plan for each section were reviewed and constructability and economic feasibility were compared. Finally, the stability assessment was conducted for the selected construction plan which was considered to be relatively unstable by 3-D full numerical analysis considering the sidetrack construction process.

Evaluation methods of shotcrete lining stresses considering steel rib capacities by two-dimensional numerical analysis (이차원 수치해석에 의한 강지보 성능을 고려한 숏크리트 라이닝의 부재력 평가 방법)

  • Ha, Tae-Wook;Kim, Dae-Young;Shin, Young-Wan;Yang, Hyung-Sik
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.10 no.3
    • /
    • pp.269-282
    • /
    • 2008
  • In general, the effects of steel ribs are not considered in the numerical analysis of tunnel design. However, attempts have been increased recently to consider these effects in the analysis of shallow tunnels in soft ground, based on the fact that the steel ribs embedded in the shotcrete take a role to support some portion of the redistributed load due to excavation. In such analyses, the steel ribs can be considered in four different methods: (1) a conventional method where the steel ribs are not considered, (2) a method using the equivalent composite cross section in which the bending moment of shotcrete is not considered, (3) a method using the equivalent composite cross section in which both the compressive stress and the bending moment for the shotcrete and steel rib are considered, and (4) a method using beam elements for the shotcrete and the steel rib, respectively. These methods are adopted in the numerical analysis using FLAC 2D to investigate stresses of both the shotcrete and the steel rib. The overall results show that the analyses are more practical and economical when the effects of steel rib are considered fer the methods (2), (3), and (4). Since the results of those analyses considering steel rib capacity may be different according to the ground condition, it will be necessary to consider the appropriate method among them in accordance with design conditions.

  • PDF

A study on critical strain based damage-controlled test for the evaluation of rock tunnel stability (암반터널 안정성 평가를 위한 손상제어실험 기반의 한계변형률에 관한 연구)

  • Lee, Kang-Hyun;Kim, Do-Hoon;Park, Jeong-Jun;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.13 no.6
    • /
    • pp.501-517
    • /
    • 2011
  • In general, the tunnel stability during excavation is assessed by comparing measured displacements at roof and sidewall to control criteria. The control criteria were established based on the past experience that considered ground conditions, size of the tunnel cross section, construction method, supports, etc. Therefore, a number of researches on the control criteria using the critical strain have been conducted. However, the critical strain obtained from uniaxial compression tests have drawbacks of not taking damage in rock mass due to increase of stress level and longitudinal arching into account. In this paper, damage-controlled tests simulating stress level and longitudinal arching during tunnel excavation were carried out in addition to uniaxial compression tests to investigate the critical strain characteristics of granite and gneiss that are most abundant rock types in Korean peninsula. Then, the critical strains obtained from damage-controlled tests were compared to those from uniaxial compression tests; the former showed less values than the latter. These results show that the critical strain obtained from uniaxial compression tests has to be reduced a little bit to take stress history during tunnel excavation into account. Moreover, the damage critical strain was proposed to be used for assessment of the brittle failure that usually occurs in deep tunnels.

Seismic performance evaluation of middle-slab vibration damping rubber bearings in multi-layer tunnel through full-scale shaking table (실대형 진동대 시험을 통한 복층터널 중간 슬래브 진동 감쇠 고무받침 내진성능 평가)

  • Jang, Dongin;Park, Innjoon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.4
    • /
    • pp.337-346
    • /
    • 2020
  • Traffic jam and congestion in urban areas has caused the need to improve the utility of underground space. In response, research on underground structures is increasingly being conducted. Notably, a double-deck tunnel is one of the most widely used of all those underground structures. This double-deck tunnel is separated by the middle slab into the upper and lower roadways. Both vehicle load and earthquake load cause the middle slab to exhibit dynamic behavior. Earthquake-related response characteristics, in particular, are highly complex and difficult to interpret in a theoretical context, and thus experimental research is required. The aim of the present study is to assess the stability of a double-deck tunnel's middle slab of the Collapse Prevention Level and Seismic Category 1 with regard to the presence of vibration-damping Rubber Bearings. In vibration table tests, the ratio of similitude was set to 1/4. Linings and vibrating platforms were fixed during scaled model tests to represent the integrated behavior of the ground and the applied models. In doing so, it was possible to minimize relative behavior. The standard TBM cross-section for the virtual double-deck tunnel was selected as a test subject. The level of ground motion exerted on the bedrock was set to 0.154 g (artificial seismic wave, Collapse Prevention Level and Seismic Category 1). A seismic wave with the maximum acceleration of 0.154 g was applied to the vibration table input (bedrock) to analyze resultant amplification in the models. As a result, the seismic stability of the middle slab was evaluated and analyzed with respect to the presence of vibration-damping rubber bearings. It was confirmed that the presence of vibration-damping rubber bearings improved its earthquake acceleration damping performance by up to 40%.

A basic study on explosion pressure of hydrogen tank for hydrogen fueled vehicles in road tunnels (도로터널에서 수소 연료차 수소탱크 폭발시 폭발압력에 대한 기초적 연구)

  • Ryu, Ji-Oh;Ahn, Sang-Ho;Lee, Hu-Yeong
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.6
    • /
    • pp.517-534
    • /
    • 2021
  • Hydrogen fuel is emerging as an new energy source to replace fossil fuels in that it can solve environmental pollution problems and reduce energy imbalance and cost. Since hydrogen is eco-friendly but highly explosive, there is a high concern about fire and explosion accidents of hydrogen fueled vehicles. In particular, in semi-enclosed spaces such as tunnels, the risk is predicted to increase. Therefore, this study was conducted on the applicability of the equivalent TNT model and the numerical analysis method to evaluate the hydrogen explosion pressure in the tunnel. In comparison and review of the explosion pressure of 6 equivalent TNT models and Weyandt's experimental results, the Henrych equation was found to be the closest with a deviation of 13.6%. As a result of examining the effect of hydrogen tank capacity (52, 72, 156 L) and tunnel cross-section (40.5, 54, 72, 95 m2) on the explosion pressure using numerical analysis, the explosion pressure wave in the tunnel initially it propagates in a hemispherical shape as in open space. Furthermore, when it passes the certain distance it is transformed a plane wave and propagates at a very gradual decay rate. The Henrych equation agrees well with the numerical analysis results in the section where the explosion pressure is rapidly decreasing, but it is significantly underestimated after the explosion pressure wave is transformed into a plane wave. In case of same hydrogen tank capacity, an explosion pressure decreases as the tunnel cross-sectional area increases, and in case of the same cross-sectional area, the explosion pressure increases by about 2.5 times if the hydrogen tank capacity increases from 52 L to 156 L. As a result of the evaluation of the limiting distance affecting the human body, when a 52 L hydrogen tank explodes, the limiting distance to death was estimated to be about 3 m, and the limiting distance to serious injury was estimated to be 28.5~35.8 m.

An Experimental Study on the Mixing Flow Structure of Turbulent Cross Flow with Respect to the Ratio of Mass Flow Rate (난류충돌유동의 질량유량비에 따른 혼합유동구조에 관한 실험적 연구)

  • 이대옥;노병준
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.11
    • /
    • pp.2150-2158
    • /
    • 1992
  • This study was carried out to investigate the flow structure and mixing process of a cross mixing flow formed by two round jets with respect to the ratio of mass flow rate. This flow configuration is of great practical relevance in a variety of combustion systems, and the flow behaviour of a cross jet defends critically on the ratio of mass flow rate and the cross angle. The mass flow rate ratios of two different jets were controlled as 1.0, 0.8, 0.6, and 0.4, and the crossing angle of two round jets was fixed at 45 degree. The velocities issuing from jet nozzle with an exit diameter of 20mm were adjusted to 40m/s, 32m/s, 24m/s, and 16m/s, and the measurements have been conducted in the streamwise range of $1.1X_0$to $2.5X_0$ by an on-line measurement system consisted of a constant temperature type two channel hot-wire anemometry connected to a computer analyzing system. The original air flow was generated by a subsonic wind tunnel with reliable stabilities and uniform flows in the test section. For the analysis of the cross mixing flow structure in the downstream region after the cross point, the mean velocity profiles, the resultant velocity contours, and the three-dimensional profiles depending upon the mass flow rate ratio have been concentrately studied.

An Experimental Study on the Turbulent Flow of a 45$^{\circ}C$ Free Cross Jet (450自由衝突 噴射 의 亂流流動 에 관한 實驗的 硏究)

  • 노병준;김장권
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.8 no.5
    • /
    • pp.442-449
    • /
    • 1984
  • Turbulent jet flow has been studied in many ways; a plane jet, a rectangular jet, an annular jet, a round jet, a wall jet, a parallel jet, a valve jet, a cross jet, a slit jet and etc. In this report, a 45.deg. cross jet flow was tried by using two same dimensioned nozzels(dia..phi.20)which were set up at the exit of the subsonic wind tunnel. Each jet flows to the direction of 22.5.deg. to the axis of downstream of the mixed flow. The centerline of each jet meets at the distance of 217.3mm and their mixing flow could be imagined to develop beyond that distance, so the measurement was effectuated at X/X$_{0}$=1.2-1.5. The section of the mixed flow a elliptic circle which is formed by the 22.5.deg. inclined flows to the X direction. This experimental study aimed at the investigation of the turbulent mixing process of two jets; the mean velocities, the turbulent shear stresses, the correlation coefficients, and the momentum were respectively measured. The mean velocity distribution profiles of the down-stream component measured in the Y direction coincide well with the empirical equation of Gortler and those measured in the Z direction agree with the equation of H. Schlichting. Other mean velocities V over bar and W over bar components were randomly distributed. The higher values with same order of the intensity of turbulence were largely distributed at the central part of the flow. The momentum was decreased up to 70% by the shock losses and the development of intense turbulences, but it kept its value constantly beyond X/d=14. Two-channel hot-wire anemometer systems (model 1050 series), X-type hot-wire made of tungsten (dia. .phi.e.mu.m, long 3mm, model 0252 T5), a computer(model HP 9845B0, and a plotter (model HP 9872C) were used for the experiments and the analyses.s.

A evaluation study of a fire smoke diffusion delay device installed in a great depth underground double deck tunnel (대심도 복층터널에 설치 가능한 화재연기 확산지연장치 성능 평가 연구)

  • Shin, Tae-Gyun;Moon, Jung-Joo;Yang, Yong-Won;Lee, Yun-Taek
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.1
    • /
    • pp.225-234
    • /
    • 2018
  • Domestic urban areas are experiencing serious traffic congestion problems due to continuous population growth and increased traffic volume. In order to solve the problem of traffic congestion, the study of great depth underground double deck tunnels using underground space is being actively carried out in the urban areas. The characteristics of great depth underground double deck tunnels are low in cross section, so the spread of fire smoke is expected to spread faster than the road tunnel in case of fire. Therefore, it is necessary to provide a fire smoke delay device which delays the spread of fire smoke when a fire occurs in a tunnels. In the previous study, the diffusion effect was analyzed according to the blocking area when the fire smoke spread delay device was operated through the 3D CFD in the study of preventing the smoke spread in the case of the tunnel fire. A study on fire smoke diffusion delay device using spring elasticity which is excellent in applicability to a tunnel and economical value is studied. In this study, fire smoke spread delay system was developed to fire smoke delay was experimentally analyzed. Fire smoke delay effect of fire smoke delay device appeared. Therefore, it is considered that the can minimize the damage of the victims when installed in the great depth underground double deck tunnels.

A study on the effect of blasting vibration and the optimal blasting offset according to the depth of tunnel (터널 심도에 따른 발파 진동 영향 및 최적 발파 이격거리 연구)

  • Kong, Suk-Min;Choi, Sang-Il;Kim, Yeong-Bae;Noh, Won-Seok;Kim, Chang-Yong;Lee, Seong-Won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.6
    • /
    • pp.483-494
    • /
    • 2022
  • Owing to the saturation of ground spaces in downtown areas, underground spaces are being developed increasingly. Underground spaces are utilized for transportation, water supply and sewerage, communication zones, electric power zones, and various cultural complexes. In Korea, for excavating underground spaces, blasting methods using gunpowder such as the New Austrian Tunneling Method (NATM) are mainly used. However, the blasting method causes vibration and noise during tunnel excavation, generating many complaints from residents in the vicinity of the excavation site. To address this problem, various methods have been developed, and recently, vibration and noise have been reduced using deep excavation. This study predicts blast vibration changes according to the depth, under the same blasting and tunnel conditions, using numerical analysis based on the blast vibration measurement data of the GTX-A route, the tunnel cross-section drawings, and ground investigation reports. Furthermore, the necessary separation distance from densely populated areas such as residential areas is suggested by analyzing the trend of decreasing blast vibration according to the distance from ground surface directly above the blasting location.