• Title/Summary/Keyword: tunnel convergence

Search Result 211, Processing Time 0.028 seconds

Relations between Initial Displacement Rate and Final Displacement of Arch Settlement and Convergence of a Shallow Tunnel (저심도 터널의 천단침하 및 내공변위의 초기변위속도와 최종변위의 관계)

  • Kim, Cheehwan
    • Tunnel and Underground Space
    • /
    • v.23 no.2
    • /
    • pp.110-119
    • /
    • 2013
  • It is generalized to measure the arch settlement and convergence during tunnel construction for monitoring its mechanical stability. The initial convergence rate a day is defined from the first convergence measurement and the final convergence defined as the convergence measured lastly. The initial and the final tunnel arch settlement are defined like the preceding convergence. In the study, the relations between the initial and final displacements of a shallow tunnel are analyzed. The measurements were performed in the tunnel of subway 906 construction site in Seoul. The overburden is 10-20 m and the tunnel goes through weathered soil/rock. The width and height of the tunnel are about 11.5 m, 10m, respectively. So this is a shallow tunnel in weak rock. The length of tunnel is about 1,820 m and the tunnel was constructed in 2 stages, dividing upper and lower half. The numbers of measurement locations of arch settlement and convergence are 184 and 258, respectively. As a result, the initial displacement rate and the final displacement are comparatively larger in the section of weathered soil.

Study on the Convergence of the NATM Tunnel Constructed in the Weathered Granite (풍화 화강암 지반에 건설된 NATM터널에서의 내공변위 연구)

  • Shin, Sang-Sik;Kim, Hak Joon;Bae, Gyu Jin
    • Tunnel and Underground Space
    • /
    • v.25 no.6
    • /
    • pp.515-526
    • /
    • 2015
  • Predicting and measuring tunnel convergence is very crucial for estimating tunnel stability and economical construction of NATM tunnels. The method to estimate the tunnel convergence that occurs before and after construction is proposed based on literature reviews. The total displacement occurring related to tunnel construction is determined to be about 2.5 times that of measured displacements. The results of displacement measurements at two tunnels constructed with similar rock types are examined for the investigation of factors affecting the tunnel convergence. The average convergence of Gyungju A Tunnel is about 6.7 times bigger than that of Daejeon B Tunnel. The possible causes of the large convergence in Gyungju A Tunnel are suggested. In order to predict the convergence of tunnels, careful investigation of the geological structures in the ground surface and the influence of external conditions as well as careful face mapping of the tunnel face should be conducted.

Assessment of wall convergence for tunnels using machine learning techniques

  • Mahmoodzadeh, Arsalan;Nejati, Hamid Reza;Mohammadi, Mokhtar;Ibrahim, Hawkar Hashim;Mohammed, Adil Hussein;Rashidi, Shima
    • Geomechanics and Engineering
    • /
    • v.31 no.3
    • /
    • pp.265-279
    • /
    • 2022
  • Tunnel convergence prediction is essential for the safe construction and design of tunnels. This study proposes five machine learning models of deep neural network (DNN), K-nearest neighbors (KNN), Gaussian process regression (GPR), support vector regression (SVR), and decision trees (DT) to predict the convergence phenomenon during or shortly after the excavation of tunnels. In this respect, a database including 650 datasets (440 for training, 110 for validation, and 100 for test) was gathered from the previously constructed tunnels. In the database, 12 effective parameters on the tunnel convergence and a target of tunnel wall convergence were considered. Both 5-fold and hold-out cross validation methods were used to analyze the predicted outcomes in the ML models. Finally, the DNN method was proposed as the most robust model. Also, to assess each parameter's contribution to the prediction problem, the backward selection method was used. The results showed that the highest and lowest impact parameters for tunnel convergence are tunnel depth and tunnel width, respectively.

Development of Underground Displacement and Convergence Auto-Measuring Program for the Tunnel Using the Fiber Optic Sensor (광섬유 센서를 이용한 터널 지중 및 내공변위 자동계측 프로그램 개발)

  • Choi, Myong-Ho;Yoon, Ji-Son;Kwon, Oh-Duk;Kwon, Oh-Jun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.1361-1368
    • /
    • 2005
  • In this paper, the theoretical method of measuring the tunnel convergence and underground displacement, the objective indices of assessing safety for tunnel construction, using the fiber optic sensor is studied by developing the program to automatically measure them. The model test of Con'c beam is conducted to evaluate reliability of the fiber optic sensor. Furthermore, using the RS232 communication protocol as well as Visual C# and Visual C++, the programming tools, the program was developed to detect automatically the measured value of the fiber optic sensor, calculate the tunnel convergence and underground displacement, predict the deformed shape of the tunnel, and evaluate loosening zone due to the tunnel excavation.

  • PDF

Geotechnical parameter estimation in underwater tunnel using relative convergence measurement (하저터널에서 상대내공변위 계측을 통한 지반정수 예측)

  • Kim, Do-Hoon;Jang, Jea-Hyuck;Lee, In-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.792-802
    • /
    • 2008
  • If a tunnel is constructed below the groundwater level, the groundwater flow will occur inducing the seepage force toward the tunnel and will result in the increase of tunnel convergence. The longitudinal deformation during tunnel excavation will also be increased due to seepage pressure. A back-analysis methodology in underwater tunnel was proposed in this study based on the relative longitudinal deformation measured in-situ. Geotechnical parameters can be estimated utilizing the proposed method where the prior estimate as well as the measured convergence can be reasonably combined by adopting the Extend Bayesian Method.

  • PDF

Case Studies of Automatic Measurement and strength for Damage in the Public Tunnel (공용중인 터널의 변상에 대한 보강 및 자동화계측 사례)

  • Han Ja-Jung;Kim Young-Ho;Jang Gi-Soo;Kweon Young-Jung;Ahn Sang-Ro
    • 한국터널공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.270-281
    • /
    • 2005
  • An especial attention for old tunnel safety is required on increasing of The various tunnel recently. Specially, the lining investigation method of the old tunnel will be able to presume condition of concrete lining indirectly. Because it is many restriction thought of environment and ground condition investigation method of tunnel lining rear. This study carried out section & convergence measurement of part which was deformed in tunnel lining. It had been observed for the change of tunnel behavior with a continuous measurement. It has been analyzed for a cause of tunnel deformation and inspected for the effect after a repair-reinforcement to tunnel compared with the effect before those by structure analysis. By establishing automatic measurement system after repair-reinforcement to tunnel, it would be accomplished to convergence measurement continually. As a result, it was observed that deflection and deformation of tunnel was convergent. but it should be followed to a continuous maintenance because of unstable ground condition, cause of inner tunnel, environment. The railroad tunnel which was executed a reinforcement of the tunnel lining must investigate the close condition of reinforcement lining and concrete lining.

  • PDF

Estimation of Tunnel Convergence Using Statistical Analysis (통계처리를 활용한 터널 내공변위의 분석에 관한 연구)

  • 김종우
    • Tunnel and Underground Space
    • /
    • v.13 no.2
    • /
    • pp.108-116
    • /
    • 2003
  • Measured convergence data of a tunnel were investigated by means of statistical and regression analysis, where the rock mass were mainly composed of andesite and granite. The rock mass around tunnel were classified by RMR method into five different ratings, and then convergence data which belong to individual ratings were statistically processed to find out the appropriate regression equations. Exponential equations were better coincided with measured data than logarithmic equations. As the number of rock mass rating was increased, the magnitude and standard deviation of convergence were increased. Final convergence data were also investigated to study the relevance with both maximum displacement rate and early measured convergence. Some brief results of their relevance are presented. For instance, the regression coefficient between final convergence and maximum displacement rate was turned out to be 0.87 for this studied tunnel.

Ground Response Curve for Ground Movement Analysis of Tunnel (지반응답곡선을 이용한 터널의 지반거동 분석)

  • Lee, Song;Ahn, Sung-Hak;Ahn, Tae-Hun;Kong, Sung-Suk
    • Journal of the Korean Society for Railway
    • /
    • v.5 no.4
    • /
    • pp.244-252
    • /
    • 2002
  • We must notice ground movement by excavation for reasonable tunnel designs. The convergence confinement method is an attempt to evaluate tunnel stability conditions by means of a mathematical model and a ground response curve. In this study, the convergence confinement method by numerical model was examined. This method don't need the basic assumptions for a mathematical model of circular tunnel shape, and hydrostatic in situ stress. Also modified ground response curve that is calculated after installing the support, is suggested, which informs us the ground movement mechanism. The ground response curve and the support reaction curve are mutually dependent. Especially the support reaction curve depends upon the ground response curve. The mechanism of tunnel must be analyzed by the interaction between support and ground. Consequently the stability of tunnel must be qualitatively investigated by a ground response curve and quantitatively adjudged by a numerical analysis for the reasonable design of tunnel.

Theory and Analysis Method of Tunnel Convergence (터널 내공변위의 이론과 계측결과의 분석)

  • 김호영;박의섭
    • Tunnel and Underground Space
    • /
    • v.3 no.1
    • /
    • pp.80-95
    • /
    • 1993
  • Convergence measurements play very important role in the assessment of stability of a tunnel and of the economics of rock reinforcements. The characteristics of convergences are both due to the face advance effect and the time-dependent behaviour of rocks. As the convergence law can be modeled as a specific function of two variables of distance and time, we can determine the type of function and the related parameters from the field measurements. By using the regression method based on the Levengberg-Marquardt algorithm, an analysis of convergence of two different tunnels and one numerical example is described. It is shown that the convergence can be modeled as following function, C(x)=a{1-exp(-bx)} or C(t)=a{1-exp(-bt)} in case of a tunnel excavated in elastic rocks, in case of elasto-plastic or over stressed rocks.

  • PDF

A Numerical Analysis Study for the Prediction of Convergences and Characteristics of Subsidence behavior in Shallow, Wide Tunnel Excavation (천층 광폭터널의 내공변위 및 침하거동특성 예측을 위한 수치해석적 연구)

  • 문승백;송승곤;양형식;전양수;한공창
    • Tunnel and Underground Space
    • /
    • v.11 no.1
    • /
    • pp.20-29
    • /
    • 2001
  • Final convergence of tunnel crown due to excavation have been well predicted by regression analysis which is expressed as a function of convergence curve on a time and distance dependent. In this study, the validity of the equations for shallow, wide tunnel was investigated by measurement and numerical analysis. Studied tunnel(Sansoo Tunnel) is located at the boundary of downtown and mountain park. Exponential predictions equation was better coincided with measured data than fractional equation for studied tunnel, although the ground was expected to be elasto-plastic. This is because weathered rock ground is changed elasto-plastic ground into elastic ground by multi-steel grouting and forepoling.

  • PDF