• Title/Summary/Keyword: tunnel blast design

Search Result 55, Processing Time 0.022 seconds

A fundamental study on the automation of tunnel blasting design using a machine learning model (머신러닝을 이용한 터널발파설계 자동화를 위한 기초연구)

  • Kim, Yangkyun;Lee, Je-Kyum;Lee, Sean Seungwon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.5
    • /
    • pp.431-449
    • /
    • 2022
  • As many tunnels generally have been constructed, various experiences and techniques have been accumulated for tunnel design as well as tunnel construction. Hence, there are not a few cases that, for some usual tunnel design works, it is sufficient to perform the design by only modifying or supplementing previous similar design cases unless a tunnel has a unique structure or in geological conditions. In particular, for a tunnel blast design, it is reasonable to refer to previous similar design cases because the blast design in the stage of design is a preliminary design, considering that it is general to perform additional blast design through test blasts prior to the start of tunnel excavation. Meanwhile, entering the industry 4.0 era, artificial intelligence (AI) of which availability is surging across whole industry sector is broadly utilized to tunnel and blasting. For a drill and blast tunnel, AI is mainly applied for the estimation of blast vibration and rock mass classification, etc. however, there are few cases where it is applied to blast pattern design. Thus, this study attempts to automate tunnel blast design by means of machine learning, a branch of artificial intelligence. For this, the data related to a blast design was collected from 25 tunnel design reports for learning as well as 2 additional reports for the test, and from which 4 design parameters, i.e., rock mass class, road type and cross sectional area of upper section as well as bench section as input data as well as16 design elements, i.e., blast cut type, specific charge, the number of drill holes, and spacing and burden for each blast hole group, etc. as output. Based on this design data, three machine learning models, i.e., XGBoost, ANN, SVM, were tested and XGBoost was chosen as the best model and the results show a generally similar trend to an actual design when assumed design parameters were input. It is not enough yet to perform the whole blast design using the results from this study, however, it is planned that additional studies will be carried out to make it possible to put it to practical use after collecting more sufficient blast design data and supplementing detailed machine learning processes.

Tunnel Blast Design in Consideration of Joint Properties (절리특성을 고려한 터널 발파 설계)

  • 김치환
    • Tunnel and Underground Space
    • /
    • v.11 no.2
    • /
    • pp.182-189
    • /
    • 2001
  • Rockmass properties have great influence on blasting performance so that it cannot be overemphasized to analyze rockmass properties and to perform blast design based on them. Up to the present, however blast design is performed either considering only uniaxial compressive strength of intact rock or using RMR classification as a blast ability classification scheme. In this paper Ashby's approach is adopted to evaluate blast index. In addition. rockmass classification for the blast design based on joint survey results and pattern design procedure are added to Ashby's original approach. With this extended approach, blastability can be classified considering joint properties and objectiveness of evaluated blast index can be confirmed. This approach is anticipated to enhance the tunnel blast design by considering joint properties and classifying the rockmass for blast design.

  • PDF

Blast Overpressure Evaluation for Blast Valves in Protective Tunnels with Rectangular-Shaped Tunnel Entrances (각형 출입구를 갖는 방호터널의 방폭밸브에 미치는 폭압 평가)

  • Pang, Seungki;Shin, Jinwon
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.17 no.4
    • /
    • pp.79-90
    • /
    • 2021
  • This paper presents a study to reduce the effect of blast pressure on the blast valves installed in protection tunnels, where the shape of the tunnel entrance and the blast pocket is optimized based on the predetermined basic shape of the protective tunnels. The reliability of the numerical tunnel models was examined by performing analyses of mesh convergence and overpressure stability and with comparison to the data in blast-load design charts in UFC 3-340-02 (DoD, 2008). An optimal mesh size and a stabilized distance of overpressure were proposed, and the numerical results were validated based on the UFC data. A parametric study to reduce the blast overpressures in tunnel was conducted using the validated numerical model. Analysis was performed applying 1) the entrance slope of 90, 75, 60, and 45 degrees, 2) two blast pockets with the depth 0.5, 1.0, and 1.5 times the tunnel width, 3) the three types of curved back walls of the blast pockets, and 4) two types of the upper and lower surfaces of the blast pockets to the reference tunnel model. An optimal solution by combining the analysis results of the tunnel entrance shape, the depth of the blast pockets, and the upper and lower parts of the blast pockets was provided in comparison to the reference tunnel model. The blast overpressures using the proposed tunnel shape have been reduced effectively.

Failure of circular tunnel in saturated soil subjected to internal blast loading

  • Han, Yuzhen;Liu, Huabei
    • Geomechanics and Engineering
    • /
    • v.11 no.3
    • /
    • pp.421-438
    • /
    • 2016
  • Explosions inside transportation tunnels might result in failure of tunnel structures. This study investigated the failure mechanisms of circular cast-iron tunnels in saturated soil subjected to medium internal blast loading. This issue is crucial to tunnel safety as many transportation tunnels run through saturated soils. At the same time blast loading on saturated soils may induce residual excess pore pressure, which may result in soil liquefaction. A series of numerical simulations were carried out using Finite Element program LS-DYNA. The effect of soil liquefaction was simulated by the Federal Highway soil model. It was found that the failure modes of tunnel lining were differed with different levels of blast loading. The damage and failure of the tunnel lining was progressive in nature and they occurred mainly during lining vibration when the main event of blast loading was over. Soil liquefaction may lead to more severe failure of tunnel lining. Soil deformation and soil liquefaction were determined by the coupling effects of lining damage, lining vibration, and blast loading. The damage of tunnel lining was a result of internal blast loading as well as dynamic interaction between tunnel lining and saturated soil, and stress concentration induced by a ventilation shaft connected to the tunnel might result in more severe lining damage.

CFD-Based Overpressure Evaluation Inside Expansion Chamber-Applied Protective Tunnels Subjected to Detonation of High Explosives (확장챔버를 적용한 방호터널 내부의 CFD 해석 기반 폭발압력 평가)

  • Shin, Jinwon;Pang, Seungki
    • Journal of Korean Association for Spatial Structures
    • /
    • v.23 no.1
    • /
    • pp.25-34
    • /
    • 2023
  • This paper presents a computational fluid dynamics (CFD) analysis to investiagate the effect of expansion chamber on overpressure reduction in protective tunnels subjected to detonation of high explosives. A commercial CFD code, Viper::Blast, was used to model the blast waves in a protective tunnel with a length of 160 m, width of 8.9 m and height of 7.2 m. Blast scenarios and simulation matrix were establihsed in consideration of the design parameters of expansion chamber, including the chamber lengths of 6.1 m to 12.1 m, widths of 10.7 m to 97 m, length to width ratios of 0.0 to 5.0, heights of 8.0 m and 14.9 m, and ratios of chamber to tunnel width of 1.2 to 10.9 m. A charge weight of TNT of 1000 kg was used. The mesh sizes of the numerical model of the protective tunnel were determined based on a mesh convergence study. A parametric study based on the simulation matrix was performed using the proposed CFD tunnel model and the optimized shape of expansion chamber of the considered tunnel was then proposed based on the numerical results. Design recommendations for the use of expansion chamber in protective tunnel under blast loads to reduce the internal overpressures were finally provided.

Control of Blast Vibration, Air Blast, and Fly Rock in Rock Excavation (암반굴착에 의한 발파진동, 소음 및 비석의 조절)

  • Ryu, Chang-Ha
    • Tunnel and Underground Space
    • /
    • v.2 no.1
    • /
    • pp.102-115
    • /
    • 1992
  • Blasting operations associated with rock excavation work may have an environmental impact in nearby structures or human beings. With the increase of construction work in urban areas, vibration problems and complaints have also increased. In order to determine the optimum design parameters for safe blast, it is essential to understand blast mechanism, design variables involved in blast-induced damage, and their effects on the blasting results. This paper deals with the characteristics of ground vibrations, air blast and fly rock caused by blast, including the general method of establishing the vibration predictors, and damage criteria suggested by various investigators. The results of field measurements from open pit mine and tunnel construction work are discussed. Basic concepts of how to design blast parameters to control the generation of ground vibrations, air blast and fly rock are presented.

  • PDF

Numerical modelling of internal blast loading on a rock tunnel

  • Zaid, Mohammad;Sadique, Md. Rehan
    • Advances in Computational Design
    • /
    • v.5 no.4
    • /
    • pp.417-443
    • /
    • 2020
  • Tunnels have been an integral part of human civilization. Due to complexity in its design and structure, the stability of underground structures under extreme loading conditions has utmost importance. Increased terrorism and geo-political conflicts have forced the engineers and researchers to study the response of underground structures, especially tunnels under blast loading. The present study has been carried out to seek the response of tunnel structures under blast load using the finite element technique. The tunnel has been considered in quartzite rock of northern India. The Mohr-Coulomb constitutive model has been adopted for the elastoplastic behaviour of rock. The rock model surrounding the tunnel has dimensions of 30 m x 30 m x 35 m. Both unlined and lined (concrete) tunnel has been studied. Concrete Damage Plasticity model has been considered for the concrete lining. Four different parameters (i.e., tunnel diameter, liners thickness, overburden depth and mass of explosive) have been varied to observe the behaviour under different condition. To carry out blast analysis, Coupled-Eulerian-Lagrangian (CEL) modelling has been adopted for modelling of TNT (Trinitrotoluene) and enclosed air. JWL (Jones-Wilkins-Lee) model has been considered for TNT explosive modelling. The paper concludes that deformations in lined tunnels follow a logarithmic pattern while in unlined tunnels an exponential pattern has been observed. The stability of the tunnel has increased with an increase in overburden depth in both lined and unlined tunnels. Furthermore, the tunnel lining thickness also has a significant effect on the stability of the tunnel, but in smaller diameter tunnel, the increase in tunnel lining thickness has not much significance. The deformations in the rock tunnel have been decreased with an increase in the diameter of the tunnel.

A Dynamic Analysis and Evaluation of a Building Structure due to Tunnel Blast by using Semi-Empirica Method (준경험적 방법을 이용한 터널발파 작업시 인접구조물의 동적해석 및 진동영향성 평가)

  • Son, Sung-Wan;Ru, Kuk-Hyun;Chun, Jong-Kun;Nam, Young-Sik;Kim, Dong-Gi
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.772-775
    • /
    • 2005
  • Most engineers, related to soil and civil dynamic field, have been interested in the direct dynamic design of building transmitted from soil and rock to structure due to blasting. However it is not easy to estimate the dynamic response of structures due to blasting by using analytical method because of difficulties of soil modeling, prediction of excitation force and so on. In this paper, dynamic analysis have been performed to predict vibration level and evaluate dynamic safety of structure adjacent to tunnel blast and the semi empirical method, which is based on vibration measurement data, has been employed to consider blast vibration characteristics.

  • PDF

Tunnel Blast Design for Earthquake Accelerometer Installed Rapid Transit Railroads (지진가속도계가 설치된 고속철도 터널 인근의 발파설계)

  • Lee, Jong-Woo;Kim, Nam-Soo;Jung, Sang-Jun;Park, Chi-Myeon
    • Explosives and Blasting
    • /
    • v.32 no.1
    • /
    • pp.18-22
    • /
    • 2014
  • KoRail establishes "Guideline for earthquake acceleration measuring instrument and operation." and applies the management of the rapid transit railroad. KoRail manages the trains by train driving patterns subjected to the train operating know-how for the safety against the earthquake hazards. This paper introduces the case studies on bench blast and tunnel blast designs considering a rapid transit railroad.

A Study on Optimized Blasting Pressure Considering Damage Zone for Railway Tunnel (손상영역을 고려한 철도터널의 최적의 발파압력 선정에 관한 연구)

  • Park, Jong-Ho;Um, Ki-Yung;Cho, Kook-Hwan
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1162-1170
    • /
    • 2011
  • Since there is 70% of the land in South Korea is forest, tunnel constructions by blasting are common for building railways and roads. The damage to the bedrock and the development of overbreak near the face of the tunnel during the blasting directly affect the safety of the tunnel and the maintenance after the construction. Therefore, there is a need to investigate the damage zone in the bedrock after the blasting. The damage zone changes the properties of the bedrock and decreases the safety. Especially, the coefficient of permeability of the damaged bedrock increases dramatically, which is considered very important in construction. There is a lack of research on the damage that bedrock is received with respect to the amount of explosives in blasting, which is required for the design of optimum support in blast excavation that maximizes the support of the bedrock. Therefore, in this research, numerical analysis was performed based on the field experiment data in order to understand the mechanical characteristics of the bedrock after to the blast load and to analyze the damage that the bedrock receives from the blast load. In addition, a method was proposed for selecting the optimum blast pressure for train tunnel design with respect to the damage zone.

  • PDF