• Title/Summary/Keyword: tunnel barrier engineering

Search Result 124, Processing Time 0.029 seconds

High Density MRAM Device Technology Based on Magnetic Tunnel Junctions (자기터널접합을 활용한 고집적 MRAM 소자 기술)

  • Chun, Byong-Sun;Kim, Young-Keun
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.3
    • /
    • pp.186-191
    • /
    • 2006
  • Ferromagnetic amorphous $Ni_{16}Fe_{62}Si_8B_{14}$ and $Co_{70.5}Fe_{4.5}Si_{15}B_{10}$ layers have been devised and incorporated as free layers of magnetic tunnel junctions (MTJs) to improve MRAM reading and writing performance. The NiFeSiB and CoFeSiB single-layer film exhibited a lower saturation magnetization ($Ms=800emu/cm^3,\;and\;560emu/cm^3$, respectively) compared to that of a $Co_{90}Fe_{10}(Ms=1400emu/cm^3)$. Because amorphous ferromagnetic materials have lower Ms than crystalline ones, the MTJs incorporating amorphous ferromagnetic materials offer lower switching field ($H_{sw}$) values than that of the traditional CoFe-based MTJ. The double-barrier MTJ with an amorphous NiFeSiB free layer offered smooth surface resulting in low bias voltage dependence, and high $V_h\;and\;V_{bd}$ compared with the values of the traditional CoFe-based MTJ.

Thermal, Hydraulic and Mechanical Analysis for Disposal of Spent Nuclear Fuel in Saturated Rock Mass in the KBS-3 Concept. (KBS-3 개념에 따른 포화된 암반내 사용후핵연료 처분을 위한 열, 수리, 역학적 특성 해석)

  • 장근무;황용수;김선훈
    • Tunnel and Underground Space
    • /
    • v.7 no.1
    • /
    • pp.39-50
    • /
    • 1997
  • Reference concepts for the disposal of spent nuclear fuel and the current status of underground rock laboratory were studied. An analysis to simulate the deep disposal of spent nuclear fuel in saturated rock mass was conducted. Main input parameters for numerical study were determined based on the KBS-3 concept. A series of results showed that the temperature distribution around a cavern reached the maximum value at about 10 years after the emplacement of spent fuel. The maximum temperature at the surface of canister was more than about 12$0^{\circ}C$ at about 4 years. This temperature was not much higher than the temperature criteria to meet the performance criteria of an artificial barrier in the KBS-3 concept. The maximum upward displacement due to the heat generation of spent fuel was about 0.9cm at about 10 years after the emplacement of spent fuel. It turned out that the vertical displacement became smaller with the decrease in heat generation of a canister. The quantity of groundwater inflow into a disposal tunnel increased by about 1.6 times at 20 years after the emplacement of spent fuel with the increase of pore pressure around a cavern.

  • PDF

The Development of Soundproof System for the Blasting Noise Reduction in Tunnels (터널 발파소음 감쇠를 위한 방음시스템 개발)

  • 노상림;김욱영;조영천;이상필;유지영
    • Explosives and Blasting
    • /
    • v.22 no.1
    • /
    • pp.67-74
    • /
    • 2004
  • Blasting in urban area has become a serious issue in our living because it causes inconvenience to the resident living by construction area. Therefore, the practical solution and the better method for reducing blasting noise are highly required. However, finding practical solutions for the blasting noise is very difficult due to the lack of basic data and insufficient existing research. In order to overcome the limitation of existing sound barrier, we applied a new material to multi-layer soundproof system in the construction site, Kuksabong Tunnel in Yang Nyung-Ro. The statistical method was used to analyze blasting noise data. Through all these processes, it was verified that the soundproof system in this study was very effective method to decrease blasting noise.

Corrosion behaviors of SS316L, Ti-Gr.2, Alloy 22 and Cu in KURT groundwater solutions for geological deep disposal

  • Gha-Young Kim;Junhyuk Jang;Minsoo Lee;Mihye Kong;Seok Yoon
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4474-4480
    • /
    • 2022
  • Deep geological disposal using a multibarrier system is a promising solution for treating high-level radioactive (HLRW) waste. The HLRW canister represents the first barrier for the migration of radionuclides into the biosphere, therefore, the corrosion behavior of canister materials is of significance. In this study, the electrochemical behaviors of SS316L, Ti-Gr.2, Alloy 22, and Cu in naturally aerated KAERI underground research tunnel (KURT) groundwater solutions were examined. The corrosion potential, current, and impedance spectra of the test materials were recorded using electrochemical methods. According to polarization and impedance measurements, Cu exhibits relatively higher corrosion rates and a lower corrosion resistance ability than those exhibited by the other materials in the given groundwater condition. In the anodic dissolution tests, SS316L exposed to the groundwater solution exhibited the most uniform corrosion, as indicated by its surface roughness. This phenomenon could be attributed to the extremely low concentration of chloride ions in KURT groundwater.

Tunnel i unction-Mangnetorsistance in Co-Al-O$_{x}$-NiFe with oxidation conditions of Al thickness

  • Jeon, Dong-Min;Park, Jin-Woo;Suh, Su-Jeong
    • Journal of the Korean institute of surface engineering
    • /
    • v.34 no.5
    • /
    • pp.494-498
    • /
    • 2001
  • Ferromagnets(FM)-Al-$O_{x}$ -Ferromagnets (FM) tunneling junctions were evaluated by changing the fabricating conditions of an Al-X$/_{x}$ layer. The junction composed of a thicker Al-$O_{x}$ shows the low resistance and the stable MR ratio about 16% in a wide range of oxidation time. For the junctions with the thinner Al-$O_{x}$ , they showed a fast increase of the barrier width as an increase of an oxidation time and exhibited a strong bias dependence. As oxidation time increased, the coercivity ($H_{c}$ ) of bottom Co layer increased gradually due to the local oxidation of Co bottom layer at a interface. However, the small formation of Co oxide did not largely influence on the deterioration of MR ratio.

  • PDF

Characterization of $Nb/Al-Al_2O_3/Nb$ Josephson junction arrays fabricated With and Without cooling substrate (기판 냉각과 비냉각으로 제작된 $Nb/Al-Al_2O_3/Nb$ 조셉슨 접합 어레이의 특성)

  • Hong, Hyun-Kwon;Kim, Kyu-Tae;Park, Se-Il;Lee, Kie-Young
    • Proceedings of the KIEE Conference
    • /
    • 2001.07c
    • /
    • pp.1402-1404
    • /
    • 2001
  • Josephson junction arrays of the type $Nb/Al-Al_2O_3/Nb$ were prepared by DC magnetron sputtering. The tunnel barrier was formed by in-situ thermal oxidation. Individual junctions were defined using selective niobium etching process(SNEP). The characteristic curves of Josephson junction arrays fabricated with and without cooling the substrate were represented. The junctions deposited without cooling showed poor characteristics(high leakage current, low gap voltage), and a high quality Josephson junction array of 2,000 junctions with high hysteresis was obtained with cooling and when operated at 74.6 GHz, it generated stable quantized voltage steps up to 2.2 V.

  • PDF

Aerodynamic Drag Reduction in Cylindrical Model Using DBD Plasma Actuator (DBD 플라즈마 구동기를 이용한 원통모델의 공기저항저감)

  • Lee, Changwook;Sim, Ju-Hyeong;Han, Sunghyun;Yun, Su Hwan;Kim, Taegyu
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.1
    • /
    • pp.25-32
    • /
    • 2015
  • Dielectric barrier discharge (DBD) plasma actuator was designed to reduce aerodynamic drag in a cylindrical model and wind tunnel test was performed at various wind velocities. In addition, computational fluid dynamics (CFD) analysis and flow visualization were used to investigate the effect of the plasma on the flow stream in the cylinderical model. At low wind velocity, the plasma actuator had no effects because flow separation did not appear. The aerodynamic drag was reduced by 14% at 14 m/s and by 27% at 17 m/s, respectively. It was confirmed by CFD analysis and flow visualization that the DBD plasma actuator decreased in pressure difference around the cylindrical model, thus decreasing the magnitude of wake vortex.

Aerodynamic effect of wind barriers and running safety of trains on high-speed railway bridges under cross winds

  • Guo, Weiwei;Xia, He;Karoumi, Raid;Zhang, Tian;Li, Xiaozhen
    • Wind and Structures
    • /
    • v.20 no.2
    • /
    • pp.213-236
    • /
    • 2015
  • For high-speed railways (HSR) in wind prone regions, wind barriers are often installed on bridges to ensure the running safety of trains. This paper analyzes the effect of wind barriers on the running safety of a high-speed train to cross winds when it passes on a bridge. Two simply-supported (S-S) PC bridges in China, one with 32 m box beams and the other with 16 m trough beams, are selected to perform the dynamic analyses. The bridges are modeled by 3-D finite elements and each vehicle in a train by a multi-rigid-body system connected with suspension springs and dashpots. The wind excitations on the train vehicles and the bridges are numerically simulated, using the static tri-component coefficients obtained from a wind tunnel test, taking into account the effects of wind barriers, train speed and the spatial correlation with wind forces on the deck. The whole histories of a train passing over the two bridges under strong cross winds are simulated and compared, considering variations of wind velocities, train speeds and without or with wind barriers. The threshold curves of wind velocity for train running safety on the two bridges are compared, from which the windbreak effect of the wind barrier are evaluated, based on which a beam structure with better performance is recommended.

Simulation of Ice Ring Formation around Cryogenic Underground Storage Cavern using Hydro-Thermal Coupling Method (극저온 지하저장고 주변 ice ring 생성 모델링을 위한 열-수리 해석)

  • Jung Yong-Bok;Park Chan;Chung So-Keul;Jeong Woo-Cheol;Kim Ho-Yeong
    • Tunnel and Underground Space
    • /
    • v.16 no.3 s.62
    • /
    • pp.241-250
    • /
    • 2006
  • Ice ring formation, one of the core techniques in LNG storage in a lined rock cavern, is investigated through hydro-thermal coupled analysis. An ice ring acts as a secondary barrier in case of leakage of cryogenic liquid and as a primary barrier for groundwater intrusion into an LNG cavern. Therefore, the thickness and location of the ice ring are crucial factors for the safe operation of an LNG storage cavern, especially for maintaining the integrity of a primary barrier composed of concrete, PU foam, and steel membrane. Through numerical analyses, the position and thickness of the ice ring are estimated, and the temperature and groundwater level are compared with measured values. The temperature md groundwater level by numerical analyses show good agreement with the field measurements when temperature-dependent properties and phase change are taken into account. The schemes used in this paper can be applied for estimation of ice ring formation in designing a full-scale LNG cavern.

R&D Review on the Gap Fill of an Engineered Barrier for an HLW Repository (고준위폐기물처분장 공학적방벽의 갭채움재 기술현황)

  • Lee, Jae Owan;Choi, Young-Chul;Kim, Jin-Seop;Choi, Heui-Joo
    • Tunnel and Underground Space
    • /
    • v.24 no.6
    • /
    • pp.405-417
    • /
    • 2014
  • In a high-level waste repository, the gap fill of the engineered barrier is an important component that influences the performance of the buffer and backfill. This paper reviewed the overseas status of R&D on the gap fill used engineered barriers, through which the concept of the gap fill, manufacturing techniques, pellet-molding characteristics, and emplacement techniques were summarized. The concept of a gap fill differs for each country depending on its disposal type and concept. Bentonite has been considered a major material of a gap fill, and clay as an inert filler. Gap fill was used in the form of pellets, granules, or a pellet-granule blend. Pellets are manufactured through one of the following techniques: static compaction, roller compression, or extrusion-cutting. Among these techniques, countries have focused on developing advanced technologies of roller compression and extrusion-cutting techniques for industrial pellet production. The dry density and integrity of the pellet are sensitive to water content, constituent material, manufacturing technique, and pellet size, and are less sensitive to the pressure applied during the manufacturing. For the emplacement of the gap fill, pouring, pouring and tamping, and pouring with vibration techniques were used in the buffer gap of the vertical deposition hole; blowing through the use of shotcrete technology and auger placement and compaction techniques have been used in the gap of horizontal deposition hole and tunnel. However, these emplacement techniques are still technically at the beginning stage, and thus additional research and development are expected to be needed.