• Title/Summary/Keyword: tunnel Barrier

Search Result 232, Processing Time 0.026 seconds

Heat treatment effect of high-k HfO2 for tunnel barrier memory application

  • Hwang, Yeong-Hyeon;Yu, Hui-Uk;Kim, Min-Su;Lee, Yeong-Hui;Jo, Won-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.218-218
    • /
    • 2010
  • 기존의 비휘발성 메모리 소자는 터널 절연막으로 $SiO_2$ 단일 절연막을 이용하였다. 그러나 소자의 축소화와 함께 비휘발성 메모리 소자의 동작 전압을 낮추기 위해서 $SiO_2$ 단일 절연막의 두께도 감소 시켜야만 하였다. 하지만 $SiO_2$ 단일 절연막의 두께 감소에 따라, 메모리의 동작 횟수와 데이터 보존 시간의 감소등의 문제점들로 인해 기술적인 한계점에 이르렀다. 이러한 문제점들을 해결하기 위한 연구가 활발히 진행되고 있는 가운데, 최근 high-k 물질을 기반으로 하는 Tunnel Barrier Engineered (TEB) 기술이 주목 받고 있다. TBE 기술이란, 터널 절연막을 위해 서로 다른 유전율을 갖는 유전체를 적층함으로써 쓰기/지우기 속도의 향상과 함께, 물리적인 두께 증가로 인한 데이터 보존 시간을 향상 시킬 수 있는 기술이다. 따라서, 본 연구에서는 적층된 터널 절연막에 이용되는 $HfO_2$를 FGA (Forming Gas Annealing)와 RTA (Rapid Thermal Annealing) 공정에 의한 열처리 효과를 알아보기 위해, 온도에 따른 전기적인 특성을 MIS-Capacitor 제작을 통하여 분석하였다. 이를 위해 먼저 Si 기판 위에 $SiO_2$를 약 3 nm 성장시킨 후, $HfO_2$를 Atomic Layer Deposition (ALD) 방법으로 약 8 nm를 증착 하였고, Aluminum을 약 150 nm 증착 하여 게이트 전극으로 이용하였다. 이를 C-V와 I-V 특성을 이용하여 분석함으로 써, 열처리 공정을 통한 $HfO_2$의 터널 절연막 특성이 향상됨을 확인 하였다. 특히, $450^{\circ}C$ $H_2/N_2$(98%/2%) 분위기에서 진행한 FGA 공정은 $HfO_2$의 전하 트랩핑 현상을 줄일 뿐 만 아니라, 낮은 전계에서는 낮은 누설 전류를, 높은 전계에서는 높은 터널링 전류가 흐르는 것을 확인 하였다. 이와 같은 전압에 대한 터널링 전류의 민감도의 향상은 비휘발성 메모리 소자의 쓰기/지우기 특성을 개선할 수 있음을 의미한다. 반면 $N_2$ 분위기에서 실시한 RTA 공정에서는, 전하 트랩핑 현상은 감소 하였지만 FGA 공정 후 보다는 전하 트랩핑 현상이 더 크게 나타났다. 따라서, 적층된 터널 절연막은 적절한 열처리 공정을 통하여 비휘발성 메모리 소자의 성능을 향상 시킬 수 있음이 기대된다.

  • PDF

Hydrogeological Properties of Geological Elements in Geological Model around KURT (KURT 지역에서 지질모델 요소에 대한 수리지질특성)

  • Park, Kyung Woo;Kim, Kyung Su;Koh, Yong Kwon;Choi, Jong Won
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.10 no.3
    • /
    • pp.199-208
    • /
    • 2012
  • To develop site characterization technologies for a radioactive waste disposal research in KAERI, the geological and hydrogeological investigations have been carried out since 1997. In 2006, the KURT (KAERI Underground Research Tunnel) was constructed to study a solute migration, a microbiology and an engineered barrier system as well as deeply to understand geological environments in in-situ condition. This study is performed as one of the site characterization works around KURT. Several investigations such as a lineament analysis, a borehole/tunnel survey, a geophyscial survey and logging in borehole, were used to construct the geological model. As a result, the geological model is constructed, which includes the lithological model and geo-structural model in this study. Moreover, from the results of the in-situ hydraulic tests, the hydrogeological properties of elements in geological model were evaluated.

Fabrication of Sub-Micron Size $Al-AlO_x-Al$ Tunnel Junction using Electron-Beam Lithography and Double-Angle Shadow Evaporation Technique (전자빔 패터닝과 double-angle 그림자 증착법을 이용한 sub-micron 크기의 $Al-AlO_x-Al$ 터널접합 제작공정개발)

  • Rehmana, M.;Choi, J.W.;Ryu, S.J.;Park, J.H.;Ryu, S.W.;Khim, Z.G.;Song, W.;Chong, Y.
    • Progress in Superconductivity
    • /
    • v.10 no.2
    • /
    • pp.99-102
    • /
    • 2009
  • We report our development of the fabrication process of sub-micron scale $Al-AlO_x-Al$ tunnel junction by using electron-beam lithography and double-angle shadow evaporation technique. We used double-layer resist to construct a suspended bridge structure, and double-angle electron-beam evaporation to form a sub-micron scale overlapped junction. We adopted an e-beam insensitive resist as a bottom sacrificing layer. Tunnel barrier was formed by oxidation of the bottom aluminum layer between the bottom and top electrode deposition, which was done in a separate load-lock chamber. The junction resistance is designed and controlled to be 50 $\Omega$ to match the impedance of the transmission line. The junctions will be used in the broadband shot noise thermometry experiment, which will serve as a link between the electrical unit and the thermodynamic unit.

  • PDF

Thermal Analysis of a Horizontal Disposal System for High-level Radioactive Waste (수평 터널방식 고준위폐기물 처분시스템 주변 열 해석)

  • Choi, Heui-Joo;Kim, In-Young;Lee, Jong Youl;Kim, Hyun Ah
    • Tunnel and Underground Space
    • /
    • v.23 no.2
    • /
    • pp.141-149
    • /
    • 2013
  • The thermal analysis is carried out for a geological disposal system developed for the final disposal of a ceramic high-level waste from pyroprocessing of PWR spent fuel. The horizontal disposal tunnel type is considered with the distance of 2 m between the disposal canisters and the tunnel spacing of 25 m. The temperature distributions around the disposal canisters are calculated for the horizontal tunnel based on the conceptual design. The thermal performance analysis is carried out using a FEM program, ABAQUS. The performance analysis shows that the peak temperature in a disposal system outside the disposal canister is lower than $100^{\circ}$, which meets the thermal criterion of the disposal system. According the analysis, the peak temperature for the disposal canister located boundary of the disposal system is lower by $3^{\circ}$ than that for the canister at the central area. This implies the disposal density can be improved by locating more disposal canisters along the boundary.

Stability Assessment of Tunnel Excavation Face Utilizing Characteristics of Collapse Cases (터널 시공현장 붕괴 사례를 이용한 막장의 안정성 평가 연구)

  • Kim, Mintae
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.2
    • /
    • pp.55-64
    • /
    • 2024
  • While shield tunneling has demonstrated stability in international cases, the new Austrian tunneling method (NATM) encounters challenges in urban environments with shallow cover, weathered ground, and high groundwater levels. This paper introduces two typical collapse scenarios observed in urban areas, specifically within weathered bedrock and uncemented sandy soil layers. The collapses are analyzed using six stability evaluation methods, and the results are synthesized to assess the excavation face stability through a hexagonal diagram. The study finds a consistent agreement between the analysis results of the two collapsed tunnel sites and the evaluation outcomes. The employment of the stability evaluation diagram, a comprehensive method that considers the ground characteristics of the target tunnel, proves crucial for ensuring barrier stability during the tunnel design stage. This method is essential for a holistic evaluation, especially when addressing challenging ground conditions in urban settings.

Assessment of Corrosion Lifetime of a Copper Disposal Canister Based on the Finnish Posiva Methodology

  • Choi, Heui-Joo;Lee, Jongyoul;Cho, Dongkeun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.spc
    • /
    • pp.51-62
    • /
    • 2020
  • In this paper, an approach developed by the Finnish nuclear waste management organization, Posiva, for the construction license of a geological repository was reviewed. Furthermore, a computer program based on the approach was developed. By using the computer program, the lifetime of a copper disposal canister, which was a key engineered barrier of the geological repository, was predicted under the KAERI Underground Research Tunnel (KURT) geologic conditions. The computer program was developed considering the mass transport of corroding agents, such as oxygen and sulfide, through the buffer and backfill. Shortly after the closure of the repository, the corrosion depths of a copper canister due to oxygen in the pores of the buffer and backfill were calculated. Additionally, the long-term corrosion of a copper canister due to sulfide was analyzed in two cases: intact buffer and eroded buffer. Under various conditions of the engineered barrier, the corrosion lifetimes of the copper canister due to sulfide significantly exceeded one million years. Finally, this study shows that it is necessary to carefully characterize the transmissivity of rock and sulfide concentration during site characterization to accurately predict the canister lifetime.

Employing Al Etch Stop Layer for Nb-based SNS Josephson Junction Fabrication Process (Al 식각정지층을 이용한 Nb-based SNS 조셉슨 접합의 제조공정)

  • Choi, J.S.;Park, J.H.;Song, W.;Chong, Y.
    • Progress in Superconductivity
    • /
    • v.12 no.2
    • /
    • pp.114-117
    • /
    • 2011
  • We report our efforts on the development of Nb-based non-hysteretic Josephson junction fabrication process for quantu device applications. By adopting and modifying the existing Nb-aluminum oxide tunnel junction process, we develop a process for non-hysteretic Josephson junction circuits using metal-silicide as metallic barrier material. We use sputter deposition of Nb and $MoSi_2$, PECVD deposition of silicon oxide as insulator material, and ICP-RIE for metal and oxide etch. The advantage of the metal-silicide barrier in the Nb junction process is that it can be etched in $SF_6$ RIE together with Nb electrode. In order to define a junction area precisely and uniformly, end-point detection for the RIE process is critical. In this paper, we employed thin Al layer for the etch stop, and optimized the etch condition. We have successfully demonstrated that the etch stop properties of the inserted Al layer give a uniform etch profile and a precise thickness control of the base electrode in Nb trilayer junctions.

A study on Fairing System for Traveling Noise Reduction in Urban Subway (도시철도 운행소음 저감용 훼어링시스템 연구)

  • Choi, Sang-Chun;Jang, Won-Rak;Ho, Kyoung-Chan
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.659-666
    • /
    • 2009
  • As the density and height of the buildings nearby subway lines get higher, the unprecedented residents' appeals for noise are on the rise. Furthermore, in accordance with the revision of enforcement regulations on the Noise and Vibration Control Act, the night time noise standards have been reinforced by 5dB effective on January 1st 2010 and the appropriate measures shall be taken accordingly. For the settlement of the public grievances against noise and vibration generated on tracks in at-grade and elevated section, the installation of continuously-welded-rail, rail lubrication system, improved fastening system and higher noise barrier is currently executed. Nevertheless, the noise and vibration levels in some areas are still exceeding the limits required in the regulation. Among the measures, an installation of higher noise barrier or noise tunnel seems to be the most effective way; however, it has limitations owing to the structural stability of existing elevated structures. The paper in consideration of the local conditions and foreign practices discusses the installation of fairing system under the train body as an noise insulation panel in order to reduce the rolling noise and under-carriage noise. Based on the result of this study, a performance verification test during actual train operation is in progress for further study.

  • PDF

High density plasma etching of MgO thin films in $Cl_2$/Ar gases

  • Xiao, Y.B.;Kim, E.H.;Kong, S.M.;Chung, C.W.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.213-213
    • /
    • 2010
  • Magnetic random access memory (MRAM), based on magnetic tunnel junction (MTJ) and CMOS, is one of the best semiconductor memories because it can provide nonvolatility, fast access time, unlimited read/write endurance, low operating voltage and high storage density. For the realization of high density MRAM, the etching of MTJ stack with good properties is one of a key process. Recently, there has been great interest in the MTJ stack using MgO as barrier layer for its huge room temperature MR ratio. The use of MgO barrier layer will undoubtedly accelerate the development of MTJ stack for MRAM. In this study, high-density plasma reactive ion etching of MgO films was investigated in an inductively coupled plasma of $Cl_2$/Ar gas mixes. The etch rate, etch selectivity and etch profile of this magnetic film were examined on vary gas concentration. As the $Cl_2$ gas concentration increased, the etch rate of MgO monotonously decreased and etch slop was slanted. The effective of etch parameters including coil rf power, dc-bais voltage, and gas pressure on the etch profile of MgO thin film was explored, At high coil rf power, high dc-bais voltage, low gas pressure, the etching of MgO displayed better etch profiles. Finally, the clean and vertical etch sidewall of MgO films was achieved using $Cl_2$/Ar plasma at the optimized etch conditions.

  • PDF

R&D Review on the Gap Fill of an Engineered Barrier for an HLW Repository (고준위폐기물처분장 공학적방벽의 갭채움재 기술현황)

  • Lee, Jae Owan;Choi, Young-Chul;Kim, Jin-Seop;Choi, Heui-Joo
    • Tunnel and Underground Space
    • /
    • v.24 no.6
    • /
    • pp.405-417
    • /
    • 2014
  • In a high-level waste repository, the gap fill of the engineered barrier is an important component that influences the performance of the buffer and backfill. This paper reviewed the overseas status of R&D on the gap fill used engineered barriers, through which the concept of the gap fill, manufacturing techniques, pellet-molding characteristics, and emplacement techniques were summarized. The concept of a gap fill differs for each country depending on its disposal type and concept. Bentonite has been considered a major material of a gap fill, and clay as an inert filler. Gap fill was used in the form of pellets, granules, or a pellet-granule blend. Pellets are manufactured through one of the following techniques: static compaction, roller compression, or extrusion-cutting. Among these techniques, countries have focused on developing advanced technologies of roller compression and extrusion-cutting techniques for industrial pellet production. The dry density and integrity of the pellet are sensitive to water content, constituent material, manufacturing technique, and pellet size, and are less sensitive to the pressure applied during the manufacturing. For the emplacement of the gap fill, pouring, pouring and tamping, and pouring with vibration techniques were used in the buffer gap of the vertical deposition hole; blowing through the use of shotcrete technology and auger placement and compaction techniques have been used in the gap of horizontal deposition hole and tunnel. However, these emplacement techniques are still technically at the beginning stage, and thus additional research and development are expected to be needed.