• Title/Summary/Keyword: tungsten heavy alloy

Search Result 47, Processing Time 0.019 seconds

Synthesis of Alumina-Silica ceramic material(II) (알루미나-실리카계 세라믹복합체 제조 연구(II))

  • Kim Cheol-soo;Lee Hyung-Bock
    • Composites Research
    • /
    • v.18 no.6
    • /
    • pp.48-53
    • /
    • 2005
  • In this study, to improve the ballistic efficiency of very brilliant alumina-silica armor material, forming press and sintering temperature were changed. After physical/mechanical measurement, we measured ballistic properties about KE(Kinetic Energy, L/D=10.7, tungsten heavy alloy) and HEAT(High Explosive Anti-Tank, K215) projectiles and analyzed them. As a result, in $1235^{\circ}C$, it appeared the highest ballistic efficiency about HEAT and it improved $22\%$ ballistic efficiency, better than invented alumina-silica armor material before.

Evaluation of the Usefulness of the Transmittance of Metal Filaments Fabricated by 3D Printers in Radiation Therapy (방사선 치료에서 3D 프린터로 제작된 금속 필라멘트의 투과율에 관한 유용성 평가)

  • Kwon, Kyung-Tae;Jang, Hui-Min;Yoon, Myeong-Seong
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.7
    • /
    • pp.965-973
    • /
    • 2021
  • Since radiation therapy is irradiated with high-energy X-rays in a variety of at least 20 Gy to 80 Gy, a high dose is administered to the local area where the tumor is located, and various side effects of some normal tissues are expected. Currently, in clinical practice, lead, a representative material, is used as an effort to shield normal tissues, but lead is classified as a heavy metal harmful to the human body, and a large amount of skin contact can cause poisoning. Therefore, this study intends to manufacture a measurement sheet that can compensate for the limitations of lead using the materials Tungsten, Brass, and Copper of the 3D printer of the FDM (Fused Deposition Modeling) method and to investigate the penetration performance. Tungsten mixed filament transmission measurement sheet size was 70 × 70 mm and thickness 1, 2, 4 mm using a 3D printer, and a linear accelerator (TrueBeam STx, S/N: 1187) was measured by irradiating 100 MU at SSD 100 cm and 5 cm in water using a water phantom, an ion chamber (FC-65G), and an elcetrometer (PTW UNIDOSE), and the permeability was evaluated. As a result of increasing the measurement sheet of each material by 1 mm, in the case of Tungsten sheet at 3.8 to 3.9 cm in 6 MV, the thickness of the lead shielding body was thinner than 6.5 cm, and in case of Tungsten sheet at 4.5 to 4.6 cm in 15 MV. The sheet was thinner than the existing lead shielding body thickness of 7 cm, and equivalent performance was confirmed. Through this study, the transmittance measurement sheet produced using Tungsten alloy filaments confirmed the possibility of transmission shielding in the high energy region. It has been confirmed that the usability as a substitute is also excellent. It is thought that it can be provided as basic data for the production of shielding agents with 3D printing technology in the future.

The relation between physical/mechanical properties md ballistic properties in several engineering ceramics (세라믹스의 물리/기계적 물성과 방탄물성과의 상관관계 연구)

  • Kim Cheol-soo;Lee Hyung-Bock
    • Composites Research
    • /
    • v.18 no.6
    • /
    • pp.34-39
    • /
    • 2005
  • In this study, we analyzed the relation between physical/mechanical properties and ballistic properties for several engineering ceramics that were expected to use as armor material. After physical/mechanical measurement, we measured ballistic properties about KE(Kinetic Energy, L/D=10.7, tungsten heavy alloy) and HEAT(High Explosive Anti-Tank, K215) projectiles. Increasing Young's modulus/density, hardness/density and flexural strength/density ratios, ballistic properties were generally increased. Especially it appeared that the ballistic property about KE projectile was lineally increased, as HEL/density ratio increased.

Synthesis of Alumina-Silica ceramic armor materials(I) (알루미나-실리카계 세라믹복합체 방탄재료 연구(I))

  • Kim Cheol-soo;Lee Hyung-Bock
    • Composites Research
    • /
    • v.18 no.6
    • /
    • pp.40-47
    • /
    • 2005
  • In this study, we tried to invent ceramic armor material with brilliant ballistic properties by the silica of the high compression-expansion ratio and based on alumina that has the most economical and higher ballistic efficiency. After we choose three compositions, proper sintering temperature for each composition was decided. After physical/mechanical measurement, we measured ballistic properties about KE(Kinetic Energy, L/D=10.7, tungsten heavy alloy) and HEAT(High Explosive Anti-Tank, K215) projectiles. As a result, $46\%\;Al_2O_3\;-\;51\%\;SiO_2$ of three compositions had the highest ballistic efficiency md better properties than alumina.

A Study of Localization with Material Properties Using Numerical Method (재료의 특징에 따른 국부화에 대한 수치해석적 연구)

  • 황두순;이병섭;이용성;윤수진;홍성인
    • Transactions of Materials Processing
    • /
    • v.9 no.4
    • /
    • pp.395-403
    • /
    • 2000
  • Formation of Shear Band under the adiabatic condition is widely observed In the engineering materials during rapidly forming process lot a thermally rate-dependent material. The shear band stems from evolution of a narrow region in which an intensive plastic flow occurs. The shear band often plays a role of a precursor of the ductile fracture during a forming process. The objective of this study is to investigate the localization behavior using numerical method. In this work, the implicit finite difference scheme is employed due to the ease of convergence and the numerical stability It is noted that physical and mechanical properties of materials determine how the shear band is formed and then localized. Material properties can be characterized with inertia number dissipation number and diffusion number. It is observed that the dimensionless numbers effect on localization. Using a parametric study, comparison was made between CRS-1018 steel with WHA (tungsten heavy alloy). The deformation behavior of material in this study include an isotropic hardening as well as thermal softening. Moreover, this study suggests that a kinematic hardening constitutive relation be required to predict a more accurate strain level at a shear band.

  • PDF

High Strain-rate Deformation Behavior of NiAl/Ni Micro-laminated Composites (NiAl/Ni 미세적층복합재료의 고속변형거동)

  • Kim Hee-Yeoun;Kim Jin-Young;Jeong Dong-Seok;Enoki Manabu;Hong Soon-Hyung
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.237-240
    • /
    • 2004
  • High strain-rate deformation behavior of NiAl/Ni micro-laminated composites was characterized by split hopkins on pressure bar(SHPB). When the strain rate increased, the compressive stress of micro-laminated composites were increased a little. When the intermetallic volume fraction increased, the compressive stress of micro-laminated composites increased linearly irrespective of strain rate. Absorbed energy during the quasi-static and SHPB tests was calculated from the integrated area of stress-strain curve. Absorbed energy of micro-laminated composites deviated from the linearity in terms of the intermetallic volume fraction but merged to the value of intermetallic as the strain rate increased. This was due to high tendency of intermetallic layer for the localization of shear deformation at high strain rate. Microstructure showing adibatic shear band(ASB) confirmed that the shear strain calculated from the misalignment angle of each layer increased and ASB width decreased when the intermetallic volume fraction. Simulation test impacted by tungsten heavy alloy cylinder resulted that the absorbed energies multiplied by damaged volume of micro-laminated composites were decreased as the intermetallic volume fraction increased. Fracture mode were changed from delamination to single fracture when the intermetallic volume fraction and this results were good matched with previous results[l] obtained from the fracture tests.

  • PDF

Numerical Analysis on Penetration Reduction of a WHA Penetrator by an Impact of Linear Explosively Formed Penetrator(LEFP) (선형폭발성형탄(LEFP) 충격에 의한 WHA 관통자의 관통성능 감소에 관한 수치해석 연구)

  • Joo, Jaehyun;Choi, Joonhong;Koo, ManHoi;Kim, Dongkyu
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.384-392
    • /
    • 2017
  • A linear explosively formed penetrator(LEFP) is a modification of the explosively formed penetrator(EFP). An EFP is axisymmetric and has a dish-shaped liner while LEFP has a rectangular-shaped liner with curved cross section. Upon detonating LEFP forms laterally wide projectile like blade, leaving a long penetration hole on the target. On the other hand, a long-rod tungsten heavy alloy(WHA) penetrator is one of the major threats against most of the ground armored vehicles. In this paper, the feasibility of using an LEFP in protecting against a long-rod WHA penetrator by colliding LEFP into the threat was investigated through a set of numerical simulations. In this study, a scale-down WHA penetrator with length to diameter ratio(L/D) of 10.7 and 7.0 mm diameter was used to represent a long-rod WHA penetrator. LS-DYNA and Multi-Material ALE technique were employed for the simulation. For estimation of the protection effect by LEFP, residual penetration depths into RHA by the threat were compared according to various impact locations against the threat.