• Title/Summary/Keyword: tuned liquid damper(TLD)

Search Result 42, Processing Time 0.02 seconds

Experiment of a Liquid Damper Controlling Bi-directional Wind Responses of a Tall Building (초고층 건물의 양방향 풍응답 제어를 위한 액체댐퍼 실험)

  • Lee, Hye-Ri;Min, Kyung-Won
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.3
    • /
    • pp.287-295
    • /
    • 2010
  • This study deals with the design of a bi-directional damper using a tuned liquid damper(TLD) and a tuned liquid column damper(TLCD) for a SDOF building. Two dampers are usually needed to reduce wind-induced responses of tall buildings since they are along and across wind ones. The proposed damper has the advantage of controlling both responses with a single damper. The damper used in this study behaves as both a TLCD in a specific translational direction and a TLD in the other orthogonal direction. This paper presents experimental verification to confirm its control performance. First, shaking table test is carried out to investigate reducing responses by the damper. Control performance of the damper is expressed by the transfer function from shaking table accelerations to SDOF building ones. Testing results show that the damper reduced bi-directional responses of a SDOF building. Also, it reduced torsion responses.

Vibration Control of a Building Structure with a Tuned Liquid Damper Using Real-Time Hybrid Experimental Method (실시간 하이브리드 실험법을 이용한 동조액체댐퍼가 설치된 건물의 진동제어)

  • Lee Sung-Kyung;Lee Sang-Hyun;Min Kyung-Won;park Eun-Churn;Woo Sung-Sik;Chung Lan
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.256-263
    • /
    • 2006
  • In this paper, an experimental hybrid method, which implements the earthquake response control of a building structure with a TLD(Tuned Liquid Damper) by using only a TLD as an experimental part, is proposed and is experimentally verified through a shaking table test. In the proposed methodology, the whole building structure with a TLD is divided into the upper TLD and the lower structural parts as experimental and numerical substructures, respectively. At the moment, the control force acting between their interface is measured from the experimental TLD with shear-type load-cell which is mounted on shaking table. Shaking table vibrates the upper experimental TLD with the response calculated from the numerical substructure, which is subjected to the excitations of the measured interface control force at its top story and an earthquake input at its base. The experimental results show that the conventional method, in which both a TLD and a building structure model are physically manufactured and are tested, can be replaced by the proposed methodology with a simple experimental installation and a good accuracy for evaluating the control performance of a TLD.

  • PDF

Numerical simulation of tuned liquid tank- structure systems through σ-transformation based fluid-structure coupled solver

  • Eswaran, M.;Reddy, G.R.
    • Wind and Structures
    • /
    • v.23 no.5
    • /
    • pp.421-447
    • /
    • 2016
  • Wind-induced and earthquake-induced excitations on tall structures can be effectively controlled by Tuned Liquid Damper (TLD). This work presents a numerical simulation procedure to study the performance of tuned liquid tank- structure system through ${\sigma}$-transformation based fluid-structure coupled solver. For this, a 'C' based computational code is developed. Structural equations are coupled with fluid equations in order to achieve the transfer of sloshing forces to structure for damping. Structural equations are solved by fourth order Runge-Kutta method while fluid equations are solved using finite difference based sigma transformed algorithm. Code is validated with previously published results. The minimum displacement of structure is observed when the resonance condition of the coupled system is satisfied through proper tuning of TLD. Since real-time excitations are random in nature, the performance study of TLD under random excitation is also carried out in which the Bretschneider spectrum is used to generate the random input wave.

Shaking Table Test of Small Scale RC Structure with Tuned Liquid Damper (동조액체 감쇠기를 설치한 철근콘크리트 축소모델의 진동대 실험)

  • Woo, Seang-Sik;Lee, Sang-Hyun;Chung, Lan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.113-116
    • /
    • 2005
  • In this study, in order to. investigate the effectiveness af tuned liquid damper (TLD) for the seismic performance enhancement af the existing reinforced concrete (RC) apartment structure which is nat seismically designed, shaking table test was conducted for the small scale five stary RC structure with TLD. TLD model was constructed to. have the frequency tuned to. the first modal frequency af the structure, $2\%$ mass ratio. af the first modal mass, and 0.08 liquid depth ratio. White noise with $0.2\~5Hz$ frequency bandwidth tests were performed using the shaking table at Korea Institute af Machinery and Materials, and the displacement and absolute acceleration af each floor were measured. Test results indicate that mare than $30\%$ seismic responses reduction can be achieved using TLD for RC structure under white noise.

  • PDF

Experimental study on tuned liquid damper performance in reducing the seismic response of structures including soil-structure interaction effect

  • Lou, Menglin;Zong, Gang;Niu, Weixin;Chen, Genda;Cheng, Franklin Y.
    • Structural Engineering and Mechanics
    • /
    • v.24 no.3
    • /
    • pp.275-290
    • /
    • 2006
  • In this paper, the performance of a tuned liquid damper (TLD) in suppressing the seismic response of buildings is investigated with shake table testing of a four-story steel frame model that rests on pile foundation. The model tests were performed in three phases with the steel frame structure alone, the soil and pile foundation system, and the soil-foundation-structure system, respectively. The test results from different phases were compared to study the effect of soil-structure interaction on the efficiency of a TLD in reducing the peak response of the structure. The influence of a TLD on the dynamic response of the pile foundation was investigated as well. Three types of earthquake excitations were considered with different frequency characteristics. Test results indicated that TLD can suppress the peak response of the structure up to 20% regardless of the presence of soils. TLD is also effective in reducing the dynamic responses of pile foundation.

Study of Finite Element Analysis of Tuned Liquid Damper for Seismic Design of High-Rise Building (고층건물 내진설계용 TLD의 유한요소 해석에 관한 연구)

  • Park Seoung-Woo;Cho Jin-Rae;Lee Jae-Hoon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.597-602
    • /
    • 2006
  • Many researches have been studied several vibration control device such as TMD and TLD to reduce the influence of wind or seismic waves for high-rise buildings. TLD provides some advantages such as easy installation and low maintenance cost. However, because of the difficulties in evaluating the characteristics of TLD, the dynamic characteristics of TLD must be investigated by experiment or analysis. In this study, the dynamic response analysis of structure with TLD was carried out to verify the vibration control ability of the proposed TLD for high-rise building with about 60 stories. A real seismic wave was used, and the parameter of interest was chosen by the height of water level in the same shape of water tank. From the numerical results, the responses of structure with water tank were confirmed to be safer than those of structure without water tank.

  • PDF

Nonlinear Characteristics Evaluation of Tuned Liquid Damper with White Noise Amplitude (백색잡음 하중 크기에 따른 TLD의 비선형 특성 평가)

  • Woo, Sung-Sik;Lee, Sang-Hyun;Choi, Ki-Young;Chung, Lan;Park, Tae-Won
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.2
    • /
    • pp.135-143
    • /
    • 2008
  • In this study, it was investigated for dynamic nonlinear characteristics using dynamic data obtained by shaking table test. The design of Tuned Liquid Damper(TLD) has limitation to plan based on Tuned Mass Damper(TMD) analogy and linear wave theory. Also, while there are many studies regarding properties of TLD under harmonic load, there are not estimated for dynamic non-linear characteristics of TLD under the load that is not governed by particular frequency like a white noise. This paper investigated dynamic non-linear characteristics of TLD varied with load amplitude using a white noise and suggested equations that can estimate damping ratio, natural frequency ratio and effective mass ratio of TLD.

Numerical Investigation on Motion of the Scale Model of a Floating Wind Turbine Using Multilayer TLDs (다층 TLD를 적용한 부유식 풍력 발전기 축소 모형의 운동에 대한 수치적 고찰)

  • Ha, Minho;Cheong, Cheolung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.8
    • /
    • pp.621-627
    • /
    • 2014
  • In this paper, a possibility of controlling the motion of a floating wind turbine with the tuned liquid damper(TLD) is numerically investigated. First, motion of the scale model of a floating wind turbine without the TLD is predicted and its results are compared to the measured data. There are reasonably good agreements between two results, which confirms validity of the present numerical methods. Then, the effect of TLD is quantitatively assessed by comparing the prediction results for the floating wind turbine with and without the TLD. It is shown that the motion of the scale model derived by external forces can be reduced by using the TLD. On a basis of this result, a multi-layer TLD is proposed to generate larger reaction force of the TLD at the fixed target frequency. The motions of the scale model with the multi-layer TLDs are computed and compared with that of the single-layer TLD. It is shown that the multi-layer TLD generate stronger reaction force and thus more reduce the motion of the floating body than the single-layer TLD.

Seismic Performance of SDF Systems with Tuned Liquid Damper Subjected to Ground Motions (지진 하중에 대한 동조액체감쇠기 성능 수치해석 검토)

  • Han, Sang-Whan;Oh, Seung-Bo;Ha, Sung-Jin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.3
    • /
    • pp.261-268
    • /
    • 2016
  • Tuned Liquid Dampers(TLD) are energy dissipation devices that have been proposed to control the dynamics response of structure. The TLD has been shown to effectively control the wind response of structures. However, controlling responses of structures with TLD under seismic loads are not fully investigated. The objective of this study is to evaluate the seismic performance of single degree of freedom(SDF) with TLDs having various tuning and mass raitos. For this purpose, analytical studies are conducted. Different soil conditions are considered in this study. As a result, performance of TLD, appeared diffrently depending on the natural period, damping ratio of the structure. Also TLD tuning ratio appeared differently.