• 제목/요약/키워드: tumor-migration

검색결과 371건 처리시간 0.027초

Expression, Purification, and Biological Characterization of The Amino-Terminal Fragment of Urokinase in Pichia pastoris

  • Li, Jianping;Lin, Yuli;Zhuang, Hongqin;Hua, Zi-Chun
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권9호
    • /
    • pp.1197-1205
    • /
    • 2013
  • Urokinase (uPA) and its receptor (uPAR) play an important role in tumor growth and metastasis. Targeting the excessive activation of this system as well as the proliferation of the tumor vascular endothelial cell would be expected to prevent tumor neovasculature and halt the tumor development. In this regard, the amino-terminal fragment (ATF) of urokinase has been confirmed as effective to inhibit the proliferation, migration, and invasiveness of cancer cells via interrupting the interaction of uPA and uPAR. Previous studies indicated that ATF expressed in Escherichia coli was mainly contained in inclusion bodies and also lacked posttranslational modifications. In this study, the biologically active and soluble ATF was cloned and expressed in Pichia pastoris. The recombinant protein was purified to be homogenous and confirmed to be biologically active. The yield of the active ATF was about 30 mg/l of the P. pastoris culture medium. The recombinant ATF (rATF) could efficiently inhibit angiogenesis, endothelial cell migration, and tumor cell invasion in vitro. Furthermore, it could inhibit in vivo xenograft tumor growth and prolong the survival of tumor-bearing mice significantly by competing with uPA for binding to cell surfaces. Therefore, P. pastoris is a highly efficient and cost-effective expression system for large-scale production of biologically active rATFs for potential therapeutic application.

Vitexin Inhibits Gastric Cancer Growth and Metastasis through HMGB1-mediated Inactivation of the PI3K/AKT/mTOR/HIF-1α Signaling Pathway

  • Zhou, Peng;Zheng, Zi-Han;Wan, Tao;Wu, Jie;Liao, Chuan-Wen;Sun, Xue-Jun
    • Journal of Gastric Cancer
    • /
    • 제21권4호
    • /
    • pp.439-456
    • /
    • 2021
  • Purpose: Gastric cancer (GC) has high morbidity and mortality and is a serious threat to public health. The flavonoid compound vitexin is known to exhibit anti-tumor activity. In this study, we explored the therapeutic potential of vitexin in GC and its underlying mechanism. Materials and Methods: The viability, migration, and invasion of GC cells were determined using MTT, scratch wound healing, and transwell assays, respectively. Target molecule expression was determined by western blotting. Tumor growth and liver metastasis were evaluated in vivo using nude mice. Protein expression in the tumor tissues was examined by immunohistochemistry. Results: Vitexin inhibited GC cell viability, migration, invasion, and epithelial-mesenchymal transition (EMT) in a dose-dependent manner. Vitexin treatment led to the inactivation of phosphatidylinositol-3-kinase (PI3K)/AKT/hypoxia-inducible factor-1α (HIF-1α) pathway by repressing HMGB1 expression. Vitexin-mediated inhibition in proliferation, migration, invasion and EMT of GC cells were counteracted by hyper-activation of PI3K/AKT/HIF-1α pathway or HMGB1 overexpression. Finally, vitexin inhibited the xenograft tumor growth and liver metastasis in vivo by suppressing HMGB1 expression. Conclusions: Vitexin inhibited the malignant progression of GC in vitro and in vivo by suppressing HMGB1-mediated activation of PI3K/Akt/HIF-1α signaling pathway. Thus, vitexin may serve as a promising therapeutic agent for the treatment of GC.

Carboxymethyl Chitosan Promotes Migration and Inhibits Lipopolysaccharide-Induced Inflammatory Response in Canine Bone Marrow-Derived Mesenchymal Stem Cells

  • Ryu, Ho-Sung;Ryou, Seong-Hwan;Jang, Min;Ku, Sae-Kwang;Kwon, Young-Sam;Seo, Min-Soo
    • 한국임상수의학회지
    • /
    • 제38권6호
    • /
    • pp.261-268
    • /
    • 2021
  • The study was conducted to evaluate the effects of carboxymethyl chitosan (CMC) on proliferation, migration, and lipopolysaccharide (LPS)-induced inflammatory response in canine bone marrow-derived mesenchymal stem cells (BMSCs). The proliferation and migration of BMSCs were examined after treatment with CMC. The effect of CMC on the mRNA expression of inflammatory cytokines, such as interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, IL-10, and transforming growth factor (TGF)-β, was also evaluated by reverse transcription polymerase chain reaction (RT-PCR). In the proliferation assay, no significant changes were found at all CMC concentrations compared with controls. The migration assay showed that CMC dose-dependently stimulated the migration of BMSCs in normal and LPS-treated conditions. RT-PCR showed that TNF-α and IL-10 expressions were suppressed in the BMSCs after CMC treatment. However, other genes were not affected. Taken together, CMC promoted BMSC migration and inhibited TNF-α and IL-10. Therefore, CMC may be possible to regulate wound healing when mesenchymal stem cells are applied in inflammatory diseases.

Barbigerone Inhibits Tumor Angiogenesis, Growth and Metastasis in Melanoma

  • Yang, Jian-Hong;Hu, Jia;Wan, Li;Chen, Li-Juan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권1호
    • /
    • pp.167-174
    • /
    • 2014
  • Tumor angiogenesis, growth and metastasis are three closely related processes. We therefore investigated the effects of barbigerone on all three in the B16F10 tumor model established in both zebrafish and mouse models, and explored underlying molecular mechanisms. In vitro, barbigerone inhibited B16F10 cell proliferation, survival, migration and invasion and suppressed human umbilical vascular endothelial cell migration, invasion and tube formation in concentration-dependent manners. In the transgenic zebrafish model, treatment with $10{\mu}M$ barbigerone remarkably inhibited angiogenesis and tumor-associated angiogenesis by reducing blood vessel development more than 90%. In vivo, barbigerone significantly suppressed angiogenesis as measured by H and E staining of matrigel plugs and CD31 staining of B16F10 melanoma tumors in C57BL/6 mice. Furthermore, it exhibited highly potent activity at inhibiting tumor growth and metastasis to the lung of B16F10 melanoma cells injected into C57BL/6 mice. Western blotting revealed that barbigerone inhibited phosphorylation of AKT, FAK and MAPK family members, including ERK, JNK, and p38 MAPKs, in B16F10 cells mainly through the MEK3/6/p38 MAPK signaling pathway. These findings suggested for the first time that barbigerone could inhibit tumor-angiogenesis, tumor growth and lung metastasis via downregulation of the MEK3/6/p38 MAPK signaling pathway. The findings support further investigation of barbigerone as a potential anti-cancer drug.

The Influence of Bcl-3 Expression on Cell Migration and Chemosensitivity of Gastric Cancer Cells via Regulating Hypoxia-Induced Protective Autophagy

  • Hu, Lin;Bai, Zhigang;Ma, Xuemei;Bai, Nan;Zhang, Zhongtao
    • Journal of Gastric Cancer
    • /
    • 제20권1호
    • /
    • pp.95-105
    • /
    • 2020
  • Purpose: Gastric cancer is a highly metastatic malignant tumor, often characterized by chemoresistance and high mortality. In the present study, we aimed to investigate the role of B-cell lymphoma 3 (Bcl-3) protein on cell migration and chemosensitivity of gastric cancer. Materials and Methods: The gastric cancer cell lines, AGS and NCI-N87, were used for the in vitro studies and the in vivo studies were performed using BALB/c nude mice. Western blotting, wound healing assay, Cell Counting Kit-8 assay, immunohistochemistry, and terminal deoxynucleotidyl transferase dUTP nick end labeling assay were used to evaluate the role of Bcl-3 in gastric cancer. Results: We found that the protein expression of hypoxia (HYP)-inducible factor-1α and Bcl-3 were markedly upregulated under hypoxic conditions in both AGS and NCI-N87 cells in a time-dependent manner. Interestingly, small interfering RNA-mediated knockdown of Bcl-3 expression affected the migration and chemosensitivity of the gastric cancer cells. AGS and NCI-N87 cells transfected with si-RNA-Bcl-3 (si-Bcl-3) showed significantly reduced migratory ability and increased chemosensitivity to oxaliplatin, 5-fluorouracil, and irinotecan. In addition, si-Bcl-3 restored the autophagy induced by HYP. Further, the protective role of si-Bcl-3 on the gastric cancer cells could be reversed by the autophagy inducer, rapamycin. Importantly, the in vivo xenograft tumor experiments showed similar results. Conclusions: Our present study reveals that Bcl-3 knockdown inhibits cell migration and chemoresistance of gastric cancer cells through restoring HYP-induced autophagy.

Mechanistic Studies of Cyclin-Dependent Kinase Inhibitor 3 (CDKN3) in Colorectal Cancer

  • Yang, Cheng;Sun, Jun-Jun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권3호
    • /
    • pp.965-970
    • /
    • 2015
  • Colorectal cancer is one of the most severe subtypes of cancer, and has the highest propensity to manifest as metastatic disease. Because of the lack of knowledge of events that correlate with tumor cell migration and invasion, few therapeutic options are available. The current study aimed to explore the mechanism of colorectal cancer in hope of identifying the ideal target for future treatment. We first discovered the pro-tumor effect of a controversial cell cycle regulator, cylin-dependent kinase inhibitor 3 (CDKN3), which is highly expressed in colorectal cancer, and the possible related signaling pathways, by bioinformatics tools. We found that CDKN3 had remarkable effects in suppressing colorectal cancer cell proliferation and migration, inducing cell cycle arrest and apoptosis in a colorectal cancer cell line, SW480 cells. Our study, for the first time, provided consistent evidence showing overexpression of cell cycle regulator CDKN3, in colorectal cancer. The in vitro studies in SW480 cells revealed a unique role of CDKN3 in regulating cellular behavior of colorectal cancer cells, and implied the possibility of targeting CDKN3 as a novel treatment for colorectal cancer.

마우스에서 Tc-99m HMPAO 표지 미성숙 및 성숙 수지상세포의 이동에 관한 연구 (Migration of $^{99m}Tc$-Hexamethylpropylene Amino Oxime (HMPAO) Labeled Immature and Mature Dendritic Cells in the Mouse)

  • 이명호;이제중;민정준;허영준;송호천;박영규;박안나;범희승
    • 대한핵의학회지
    • /
    • 제39권1호
    • /
    • pp.26-33
    • /
    • 2005
  • 목적 : 이 연구는 $^{99m}Tc$-HMPAO에 표지된 미성숙 또는 성숙 수지상 세포의 마우스 생체 내 분포와 이동 양상에 대해 알아보고자 하였다. 대상 및 방법: 마우스의 대퇴골과 경골의 골수로부터 수지상 세포를 배양하고 미성숙, 성숙 수지상세포를 $^{99m}Tc$-HMPAO로 표지하였다. 방사성 표지 전후에 수지상 세포의 기능 및 표현형의 변화 유무를 알기 위해 동종 혼합 림프구 반응 (allogeneic mixed lymphocyte reaction)과 형광 활성 세포 선별 (fluorescence-activated cell sorting)을 시행하였다. 정맥 주사된 수지상 세포의 생체 내 이동은 감마 카메라 영상과 생체 분포 실험을 통하여 평가하였고, 피하 종양 마우스 모델과 대조군에서 비교하였다. 폐, 간, 비장, 신장, 종양 등 조직에서 그램 당 주사량의 백분율(%ID/g)을 계산하였다. 결과: 미성숙, 성숙 수지상 세포의 표지 효율은 각각 $60.4{\pm}5.4%$$61.8{\pm}6.7%$ 였다. 수지상 세포의 정맥주사 후 방사능은 폐에서 가장 먼저 관찰되었고, 이후 간과 비장에 분포되었다. 성숙 수지상 세포가 미성숙 수지상 세포에 비해 비장으로 더 많이 이동하였다(대조군; $38.3{\pm}4.0%\;vs.\;32.2{\pm}4.1%$, 종양이식 군: $40.4{\pm}4.1%\;vs.\;35.9{\pm}3.8%$, p<0.05). 종양으로의 이동 역시 성숙 수지상 세포가 미성숙 수지상 세포에 비해 더 많은 비율을 보였다($2.4{\pm}0.3%\;vs\;1.7{\pm}0.2%$; p=0.034). 결론: $^{99m}Tc$-HMPAO 에 표지된 수지상 세포를 이용하여 마우스 생체 내 이동을 실시간 영상화 할 수 있었다. 마우스 정맥에 주사되었을 때, 더 많은 비율의 성숙 수지상 세포가 미성숙 수지상 세포에 비해서 비장이나 종양으로 이동함을 알 수 있었다.

Adenovirus-Mediated Gene Delivery of Tissue Inhibitor of Metalloproteinase-1 Inhibits Migration of B16F10 Melanoma Cell in Wound Migration Assay

  • Seungwan Jee;Hoil Kang;Park, Sehgeun;Park, Misun;Miok Eom;Taikyung Ryeom;Kim, Okhee
    • 한국독성학회:학술대회논문집
    • /
    • 한국독성학회 2003년도 추계학술대회
    • /
    • pp.177-177
    • /
    • 2003
  • Tumor cell invasion and metastasis are a complex multistep process that involves the degradation of extracellular matrix proteins by matrix metalloproteinases (MMPs). Tissue inhibitor of metalloproteinase-1 (TIMP-1) acts as a negative regulator of matrix metalloproteinase and thus prevents tumor cell invasion and metastasis by preserving extracellular matrix integrity.(omitted)

  • PDF

Loquat (Eriobotrya japonica) leaf extract inhibits the growth of MDA-MB-231 tumors in nude mouse xenografts and invasion of MDA-MB-231 cells

  • You, Mi-Kyoung;Kim, Min-Sook;Jeong, Kyu-Shik;Kim, Eun;Kim, Yong-Jae;Kim, Hyeon-A
    • Nutrition Research and Practice
    • /
    • 제10권2호
    • /
    • pp.139-147
    • /
    • 2016
  • BACKGROUND/OBJECFTIVES: The present study was conducted to examine the inhibitory effect of loquat leaves on MDA-MB-231 cell proliferation and invasion. MATERIALS/METHODS: Female athymic nude mice were given a subcutaneous (s.c.) inoculation of MDA-MB-231 cells and randomly grouped to receive a s.c. injection of either 500 mg/kg ethanol, water extract or vehicle five times a week. Tumor growth, mitotic rate and necrosis were examined. MDA-MB-231 cells were cultured with DMSO or with various concentrations of loquat water or ethanol extract. Proliferation, adhesion, migration, invasion and matrix metalloproteinase (MMP) activity were examined. RESULTS: Tumor growth of xenograft nude mouse was significantly reduced by loquat extracts. The results of mitotic examination revealed that loquat extracts reduced tumor cell division. Both ethanol and water extracts significantly inhibited MDA-MB-231 cell proliferation. The protein expression of ErbB3 was significantly down-regulated by loquat leaf extracts. Loquat leaf extracts increased apoptosis of MDA-MB-231 cells following 24 hour incubation and the ethanol extract was more potent in inducing apoptosis than the water extract. Furthermore, loquat extracts inhibited adhesion, migration and invasion of MDA-MB-231 cells. MMP activity was significantly inhibited by loquat extracts. CONCLUSION: Our results show that extracts of loquat inhibit the growth of tumor in MDA-MB-231 xenograft nude mice and the invasion of human breast cancer cells, indicating the inhibition of tumor cell proliferation and invasion.

Klotho plays a critical role in clear cell renal cell carcinoma progression and clinical outcome

  • Kim, Ji-Hee;Hwang, Kyu-Hee;Lkhagvadorj, Sayamaa;Jung, Jae Hung;Chung, Hyun Chul;Park, Kyu-Sang;Kong, In Deok;Eom, Minseob;Cha, Seung-Kuy
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제20권3호
    • /
    • pp.297-304
    • /
    • 2016
  • Klotho functions as a tumor suppressor predominantly expressed in renal tubular cells, the origin of clear cell renal cell carcinoma (ccRCC). Altered expression and/or activity of growth factor receptor have been implicated in ccRCC development. Although Klotho suppresses a tumor progression through growth factor receptor signaling including insulin-like growth factor-1 receptor (IGF-1R), the role of Klotho acting on IGF-1R in ccRCC and its clinical relevance remains obscure. Here, we show that Klotho is favorable prognostic factor for ccRCC and exerts tumor suppressive role for ccRCC through inhibiting IGF-1R signaling. Our data shows the following key findings. First, in tumor tissues, the level of Klotho and IGF-1R expression are low or high, respectively, compared to that of adjacent non-neoplastic parenchyma. Second, the Klotho expression is clearly low in higher grade of ccRCC and is closely associated with clinical outcomes in tumor progression. Third, Klotho suppresses IGF-1-stimulated cell proliferation and migration by inhibiting PI3K/Akt pathway. These results provide compelling evidence supporting that Klotho acting on IGF-1R signaling functions as tumor suppressor in ccRCC and suggest that Klotho is a potential carcinostatis substance for ccRCC.