• 제목/요약/키워드: tumor suppressor genes

검색결과 175건 처리시간 0.024초

Alterations and Co-Occurrence of C-MYC, N-MYC, and L-MYC Expression are Related to Clinical Outcomes in Various Cancers

  • Moonjung Lee;Jaekwon Seok;Subbroto Kumar Saha;Sungha Cho;Yeojin Jeong;Minchan Gil;Aram Kim;Ha Youn Shin;Hojae Bae;Jeong Tae Do;Young Bong Kim;Ssang-Goo Cho
    • International Journal of Stem Cells
    • /
    • 제16권2호
    • /
    • pp.215-233
    • /
    • 2023
  • Background and Objectives: MYC, also known as an oncogenic reprogramming factor, is a multifunctional transcription factor that maintains induced pluripotent stem cells (iPSCs). Although MYC is frequently upregulated in various cancers and is correlated with a poor prognosis, MYC is downregulated and correlated with a good prognosis in lung adenocarcinoma. MYC and two other MYC family genes, MYCN and MYCL, have similar structures and could contribute to tumorigenic conversion both in vitro and in vivo. Methods and Results: We systematically investigated whether MYC family genes act as prognostic factors in various human cancers. We first evaluated alterations in the expression of MYC family genes in various cancers using the Oncomine and The Cancer Genome Atlas (TCGA) database and their mutation and copy number alterations using the TCGA database with cBioPortal. Then, we investigated the association between the expression of MYC family genes and the prognosis of cancer patients using various prognosis databases. Multivariate analysis also confirmed that co-expression of MYC/MYCL/MYCN was significantly associated with the prognosis of lung, gastric, liver, and breast cancers. Conclusions: Taken together, our results demonstrate that the MYC family can function not only as an oncogene but also as a tumor suppressor gene in various cancers, which could be used to develop a novel approach to cancer treatment.

사람 폐암세포주에서 p53 종양억제유전자의 변이 (Mutations of p53 Tumor Suppressor Gene in Human Lung Cancer Cell Lines)

  • 홍원선;홍석일;이동순;손영숙;이춘택
    • Tuberculosis and Respiratory Diseases
    • /
    • 제40권6호
    • /
    • pp.653-658
    • /
    • 1993
  • 연구배경 : 최근 분자유전학의 진보로 인하여 암은 다단계의 복잡한 과정을 거쳐 발생됨이 밝혀졌으며, 이러한 단계는 크게 암유전자의 활성화와 종양억제 유전자의 비활성화로 구분하게 되었다. 본 연구는 p53 종양억제 유전자에 대하여 연구하였는데, 이는 p53 유전자의 변이는 현재까지 밝혀진 종양억제 유전자중 가장 광범위한 종류의 암에서 변이가 확인되고 있기 때문이다. 폐암은 우리나라에서 비교적 흔한 암이나 분자유전학적 발암기전은 아직 불분명하다. 본 연구에서는 폐암 발생에 있어 p53 유전자의 역할을 연구하고자 사람 폐암세포주를 대상으로 p53 유전자중 변이가 높은 비율로 발생되는 영역으로 알려진 exon 4-8에 대한 유전자 변이를 연구하였다. 방법 : 사람 폐선암 세포주인 PC-9와 PC-14 그리고 사람 소세포폐암 세포주인 H69를 대상으로 proteinase K에 의한 소화와 phenol-chloroform-ethanol 방법으로 genomic DNA를 추출하였다. 추출한 DNA를 p53 유전자중 exon 4-8 영역에 대한 primer를 사용하여 polymerase chain reaction(PCR)을 하여 각 exon에 대한 DNA를 증폭시킨 뒤 single strand conformation polymorphism(SSCP) 방법으로 전기영동과 자기방사기록을 하여 전기영동상 이동변화를 관찰하여 변이를 연구하였다. 결과 : 사람 폐선암세포주인 PC-9와 PC-14 에서는 exon 7에, 사람 소세포폐암 세포주인 H69에서는 exon 5에서 전기영동상 이동변화가 관찰되어 이 영역에 p53 유전자 변이가 있음이 인정되었다. 결론 : 대상으로 하엿던 3종류의 사람 폐암세포주 모두에서 p53 유전자의 변이가 확인된 것은 p53 종양억제 유전자의 변이가 비소세포 및 소세포 폐암 발생에 중요한 역할을 하고 있음을 시사하는 소견으로 사료된다.

  • PDF

Disease Progression from Chronic Hepatitis C to Cirrhosis and Hepatocellular Carcinoma is Associated with Increasing DNA Promoter Methylation

  • Zekri, Abd El-Rahman Nabawy;Nassar, Auhood Abdel-Monem;El-Rouby, Mahmoud Nour El-Din;Shousha, Hend Ibrahim;Barakat, Ahmed Barakat;El-Desouky, Eman Desouky;Zayed, Naglaa Ali;Ahmed, Ola Sayed;Youssef, Amira Salah El-Din;Kaseb, Ahmed Omar;El-Aziz, Ashraf Omar Abd;Bahnassy, Abeer Ahmed
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권11호
    • /
    • pp.6721-6726
    • /
    • 2013
  • Background: Changes in DNA methylation patterns are believed to be early events in hepatocarcinogenesis. A better understanding of methylation states and how they correlate with disease progression will aid in finding potential strategies for early detection of HCC. The aim of our study was to analyze the methylation frequency of tumor suppressor genes, P14, P15, and P73, and a mismatch repair gene (O6MGMT) in HCV related chronic liver disease and HCC to identify candidate epigenetic biomarkers for HCC prediction. Materials and Methods: 516 Egyptian patients with HCV-related liver disease were recruited from Kasr Alaini multidisciplinary HCC clinic from April 2010 to January 2012. Subjects were divided into 4 different clinically defined groups - HCC group (n=208), liver cirrhosis group (n=108), chronic hepatitis C group (n=100), and control group (n=100) - to analyze the methylation status of the target genes in patient plasma using EpiTect Methyl qPCR Array technology. Methylation was considered to be hypermethylated if >10% and/or intermediately methylated if >60%. Results: In our series, a significant difference in the hypermethylation status of all studied genes was noted within the different stages of chronic liver disease and ultimately HCC. Hypermethylation of the P14 gene was detected in 100/208 (48.1%), 52/108 (48.1%), 16/100 (16%) and 8/100 (8%) among HCC, liver cirrhosis, chronic hepatitis and control groups, respectively, with a statistically significant difference between the studied groups (p-value 0.008). We also detected P15 hypermethylation in 92/208 (44.2%), 36/108 (33.3%), 20/100 (20%) and 4/100 (4%), respectively (p-value 0.006). In addition, hypermethylation of P73 was detected in 136/208 (65.4%), 72/108 (66.7%), 32/100 (32%) and 4/100 (4%) (p-value <0.001). Also, we detected O6MGMT hypermethylation in 84/208 (40.4%), 60/108 (55.3%), 20/100 (20%) and 4/100 (4%), respectively (p value <0.001. Conclusions: The epigenetic changes observed in this study indicate that HCC tumors exhibit specific DNA methylation signatures with potential clinical applications in diagnosis and prognosis. In addition, methylation frequency could be used to monitor whether a patient with chronic hepatitis C is likely to progress to liver cirrhosis or even HCC. We can conclude that methylation processes are not just early events in hepatocarcinogenesis but accumulate with progression to cancer.

아가리쿠스로부터 분리한 $\beta$-glucan과 그 올리고당류의 HT-29 인체 대장암 세포에 대한 항암 활성에 관한 연구 (Study on the Anti-HT-29 Human Colon Cancer Activity of $\beta$-Glucans and Their Enzymatically Hydrolyzed Oligosaccharides from Agalicus blazei Murill)

  • 이미영;김기훈;김예운;장헌길;이동석
    • 미생물학회지
    • /
    • 제42권4호
    • /
    • pp.319-325
    • /
    • 2006
  • 칡을 첨가하여 배양한 아가리쿠스버섯(Agaricus blaxei Murill)으로 부터 열수추출, gel filtration chromatography, DEAE ion exchange chromatography를 통하여 아가리쿠스 $\beta$-glucan (AG)을 추출하였다. 추출한 아가리쿠스 $\beta$-glucan에 Bacillus megaterium 유래의 endo-$\beta$-(1$\rightarrow$6)-glucanase를 처리하여 올리고당류(AO)를 얻었다. 이렇게 얻은 AG와 AO를 이용하여 HT-29 인체 대장암 세포에 대한 항암 활성을 조사한 결과, 암세포의 성장 억제 효과는 시료의 처리 농도에 의존적으로 증가하였으며, apoptosis assay에서 암세포의 apoptosis 유발이 농도에 의존적으로 증가되었다. 또한, 암세포의 세포 주기를 분석한 결과, apoptosis 발생을 뜻하는 G0 (sub-G1)기와 G1기의 비율이 증가한 반면 S기와 G2/M기는 대조군에 비해 감소되었다. 이러한 결과를 바탕으로 암세포의 apoptosis 증가에 대한 AO의 작용이 어떤 유전자와 연관이 있는지를 알아보기 위하여 cDNA microarray를 통해 유전자의 발현율을 검색한 결과, apoptosis의 내부 외부 경로에 영향을 주는 유전자(TNESE9, TNFRSF9, FADD, CASP8, BAD, CRADD, CASP9 등)의 발현이 증가되었고 세포 분열 주기의 진행과 관련된 유전자(CCND2와 CDK2)의 발현이 감소되었으며, 세포 분열 주기를 지체시키는 유전자 (CDKN2A)의 발현은 증가되었다. 또한, 사이토카인을 암호하는 유전자 (IL6, IL18, IL6R 등)와 tumor suppressor와 관련된 유전자 (CEACAM1, TP53BP2, IRF1및 PHB)의 발현이 2배 이상 증가된 것을 확인할 수 있었다. 따라서 HT-29 인체 대장암세포에 대한 AO의 성장 억제 작용은 G0/Gl기를 지체시켜 암세포 증식을 억제하고 apoptosis에 의해 암세포를 사멸시키는 항암 활성을 나타내는 것으로 확인되었으며, 특허 AO가 AG보다 현저한 활성을 보였다. 더 나아가 아가리쿠스 $\beta$-glucan (AG)과 올리고당류 (AO)는 항암 활성을 가진 대체 의약 소재로 개발될 수 있을 것으로 기대된다.

Comparative genomic hybridization 기법을 이용한 인체 구강암의 유전자 변화에 대한 연구 (GENETIC ALTERATIONS OF HUMAN ORAL CANCERS USING COMPARATIVE GENOMIC HYBRIDIZATION)

  • 이명렬;심광섭;이영수;우순섭;공구
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제26권3호
    • /
    • pp.245-253
    • /
    • 2000
  • The development and progression of oral cancer is associated with an accumulation of multiple genetic alterations through the multistep processes. Comparative genomic hybridization(CGH), newly developed cytogenetic and molecular biologic technique, has been widely accepted as a useful method to allow the detection of genetic imbalance in solid tumors and the screening for chromosome sites frequently affected by gains or losses in DNA copy number. The authors examined 19 primary oral squamous cell carcinomas using CGH to identify altered chromosome regions that might contain novel oncogenes and tumor suppressor genes. Interrelationship between these genetic aberrations detected and major oncogenes and tumor suppressor genes previously recognized in carcinogenesis of oral cancers was studied. 1. Changes in DNA copy number were detected in 14 of 19 oral cancers (78.9%, mean: 5.58, range: $3{\sim}13$). High level amplification was present in 4 cases at 9p23, $12p21.1{\sim}q13.1$, 3q and $8q24{\sim}24.3$. Fourteen cases(78.9%, mean: 3.00, range: $1{\sim}8$) showed gains of DNA copy number and 12 cases(70.5%, mean: 2.58, range: $1{\sim}9$) revealed losses of DNA copy number. 2. The most common gains were detected on 3q(52.6%), 5p(21.0%), 8q(21.0%), 9p(21.0%), and 11q(21.0%). The losses of DNA copy number were frequently occurred at 9p(36.8%), 17q(36.8%), 13q(26.3%), 4p(21.0%) and 9p(21.0%). 3. The minimal common regions of gains were repeatedly observed at $3q24{\sim}26.7$, $3q27{\sim}29$, $1q22{\sim}31$, $5p12{\sim}13.3$, $8q23{\sim}24$, and 11q13.1-13.3. The minimal common regions of losses were detected at $9q11{\sim}21.3$, 17p31, $13q22{\sim}34$, and 14p16. 4. In comparison of CGH results with tumor stages, the lower stage group showed more frequent gain at 3q, 5q, 9p, and 14q, whereas gains at 1q($1q22{\sim}31$) and 11q($11q13.1{\sim}13.3$) were mainly detected in higher stage group. The loss at $13q22{\sim}34$ was exclusively detected in higher stage. The results indicate that the most frequent genetic alterations in the development of oral cancers were gains at $3q24{\sim}26.3$, $1q22{\sim}31$, and $5p12{\sim}13.3$ and losses at $9q11{\sim}21.3$, 17p31, and 13q. It is suggested that genetic alterations manifested as gains at $3q24{\sim}26.3$, $3q27{\sim}29$, $5p12{\sim}13.3$ and 5p are associated with the early progression of oral cancer. Gains at $1q22{\sim}31$ and $11q13.1{\sim}13.3$ and loss at 13q22-34 could be involved in the late progression of oral cancers.

  • PDF

Tumorigenic Effects of Endocrine-Disrupting Chemicals are Alleviated by Licorice (Glycyrrhiza glabra) Root Extract through Suppression of AhR Expression in Mammalian Cells

  • Chu, Xiao Ting;Cruz, Joseph Dela;Hwang, Seong Gu;Hong, Heeok
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권13호
    • /
    • pp.5117-5121
    • /
    • 2014
  • Endocrine-disrupting chemicals (EDCs) have been reported to interfere with estrogen signaling. Exposure to these chemicals decreases the immune response and causes a wide range of diseases in animals and humans. Recently, many studies showed that licorice (Glycyrrhiza glabra) root extract (LRE) commonly called "gamcho" in Korea exhibits antioxidative, chemoprotective, and detoxifying properties. This study aimed to investigate the mechanism of action of LRE and to determine if and how LRE can alleviate the toxicity of EDCs. LRE was prepared by vacuum evaporation and freeze-drying after homogenization of licorice root powder that was soaked in 80% ethanol for 72 h. We used 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) as an EDC, which is known to induce tumors or cancers; MCF-7 breast cancer cells were used as a tumorigenic model. These were treated with TCDD and various concentrations of LRE (0, 50, 100, 200, $400{\mu}g/mL$) for 24, 48, and 72 h. As a result, TCDD stimulated MCF-7 cell proliferation, but LRE significantly inhibited TCDD-induced MCF-7 cell proliferation in a dose- and time-dependent manner. Expression of TCDD toxicity-related genes, i.e., aryl hydrocarbon receptor (AhR), AhR nuclear translocator, and cytochrome P450 1A1, were subsequently down-regulated by LRE in a dose-dependent manner. Analysis of cell cycle distribution after treatment of MCF-7 cells with TCDD and various concentrations of LRE showed that LRE inhibited the proliferation of MCF-7 cells via G2/M phase arrest. Reverse transcription-polymerase chain reaction and Western blot analyses also revealed that LRE dose-dependently increased the expression of the tumor suppressor genes p53 and p27 and down-regulated the expression of cell cycle-related genes. These data suggest that LRE can mitigate the tumorigenic effects of TCDD in breast cancer cells by suppression of AhR expression and cell cycle arrest. Thus, LRE can be used as a potential toxicity-alleviating agent against EDC-mediated disease.

Up-regulation of NICE-3 as a Novel EDC Gene Could Contribute to Human Hepatocellular Carcinoma

  • Wei, Yuan-Jiang;Hu, Qin-Qin;Gu, Cheng-Yu;Wang, Yu-Ping;Han, Ze-Guang;Cai, Bing
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권9호
    • /
    • pp.4363-4368
    • /
    • 2012
  • The epidermal differentiation complex (EDC) contains a large number of gene products which are crucial for the maturation of the human epidermis and can contribute to skin diseases, even carcinogenesis. It is generally accepted that activation of oncogenes and/or inactivation of tumor suppressor genes play pivotal roles in the process of carcinogenesis. Here, NICE-3, a novel EDC gene, was found to be up-regulated in human hepatocellular carcinoma (HCC) by quantitative real-time RT-PCR. Furthermore, overexpression of exogenous NICE-3 by recombinant plasmids could significantly promote cell proliferation, colony formation and soft agar colony formation in Focus and WRL-68 HCC cell lines. Reversely, NICE-3 silencing by RNA interference could markedly inhibit these malignant phenotypes in YY-8103 and MHCC-97H cells. Moreover, cell cycle analysis of MHCC-97H transfected with siRNA by flow cytometry showed that NICE-3 knockdown may inhibit cell growth via arrest in G0/G1 phase and hindering entry of cells into S phase. All data of our findings indicate that NICE-3 may contribute to human hepatocellular carcinoma by promoting cell proliferation.

Gelsolin Induces Promonocytic Leukemia Differentiation Accompanied by Upregulation of p21CIP1

  • Shirkoohi, Reza;Fujita, Hisakazu;Darmanin, Stephanie;Takimoto, Masato
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권9호
    • /
    • pp.4827-4834
    • /
    • 2012
  • Tumor suppressor genes have received much attention for their roles in the development of human malignancies. Gelsolin has been found to be down-regulated in several types of human cancers, including leukemias. It is, however, expressed in macrophages, which are the final differentiation derivatives for the monocytic myeloid lineage, implicating this protein in the differentiation process of such cells. In order to investigate the role of gelsolin in leukaemic cell differentiation, stable clones over-expressing ectopic gelsolin, and a control clone were established from U937 leukaemia cells. Unlike the control cells, both gelsolin-overexpressing clones displayed retarded growth, improved monocytic morphology, increased NADPH and NSE activities, and enhanced surface expression of the ${\beta}$-integrin receptor, CD11b, when compared with the parental U937 cells. Interestingly, RT-PCR and western blot analysis also revealed that gelsolin enhanced p21CIP1 mRNA and protein expression in the overexpressing clones. Moreover, transient transfection with siRNA silencing P21CIP1, but not the control siRNA, resulted in a reduction in monocytic differentiation, accompanied by an increase in proliferation. In conclusion, our work demonstrates that gelsolin, by itself, is capable of inducing monocytic differentiation in U937 leukaemia cells, most probably through p21CIP1 activation.

사람 폐암과 췌장암 세포주에서 K-ras p53 유전자의 돌연변이에 대한 연구 (Mutational Analysis of K-ras and p53 Genes in Human Lung and Pancreatic Carcinoma Cell Lines)

  • 정경이;정노팔
    • 한국동물학회지
    • /
    • 제39권3호
    • /
    • pp.231-238
    • /
    • 1996
  • 여러 종류의 폐암과 췌장암 세포주를 배양하여 DNA를 분리하였다. 분리한 DNA는 PCR(Polymerase Chain Reaction)로 증폭하여 염기 서열화를 시행하여 K-ras와 p53 유전자들의 돌연변이 종류. 빈도 및 가능한 관계에 대하여 조사하였다. 연구한 암세포주 중 약 81%가 종양 유전자 K-ras와 암 억제 유전자 p53 중 적어도 하나의 돌연변이를 가지고 있었으며 두 유전자 각각에 대해서는 암 세포주 중 약 54.5%에서 돌연변이가 나타났다. 발견된 돌연변이의 종류는 1개의 세포주에 발견된 넌센스 돌연변이 이외에는 모두 미스센스 돌연변이가 일어났으며 2개의 세포주에서 일어난 염기 삽입이외에는 모두 염기 치환이 일어났다. 현재까지 p53 코돈 중 ras와 동시에 돌연변이가 일어난다고 보고된 코돈 이외에도 p53 코돈 164-165과 248이 K-ras와 동시에 돌연변이가 발생하였고, p53 유전자의 돌연변이의 위치에 관계없이 K-ras 유전자에서는 exon 1. 코돈 12개에서 돌연변이가 발생하였다.

  • PDF

Construction of Deletion Map of 16q by LOH Analysis from HCC Patients and Physical Map on 16q 23.3 - 24.1 Region

  • Chung, Jiyeol;Choi, Nae Yun;Shim, Myoung Sup;Choi, Dong Wook;Kang, Hyen Sam;Kim, Chang Min;Kim, Ung Jin;Park, Sun Hwa;Kim, Hyeon;Lee, Byeong Jae
    • Genomics & Informatics
    • /
    • 제1권2호
    • /
    • pp.101-107
    • /
    • 2003
  • Loss of heterozygosity (LOH) has been used to detect deleted regions of a specific chromosome in cancer cells. LOH on chromosome 16q has been reported to occur frequently in progressed hepatocellular carcinoma (HCC). Liver tissues from 37 Korean HCC patients were analyzed for LOH by using 25 polymorphic microsatellite markers distributed along 16q. Out of the 37 HCC patients studied, 21 patients (56.8%) showed LOH in various regions of 16q with at least one polymorphic marker. Puring the analysis of these 21 LOH cases, 6 patients showed interstitial LOHs in which the boundary of the LOH region was defined. With two rounds of LOH analysis, five commonly occurring interstitial LOH regions were identified; 16q21-22.1, 16q22.2 - 22.3, 16q22.3, 16q23.2 and 16q23.3 - 24.1. Among the five LOH regions the 16q23.3 - 24.1 region has been reported to be related with chromosome instability. A complete physical map, which covers the 3.2 Mb region of 16q23.3 - 24.1 (D16S402 and D16S486), was constructed to identify novel candidate tumor suppressor genes. We provide the minimally tiling path map consisting of 28 BAC clones. There was one gap between NT_10422.11 and NT_019609.9 of the human genome sequence contig (NCBI sequence build 33, April 29, 2003). This gap can be filled by sequencing the R-1425M20 clone which bridges these sequence contigs.