• 제목/요약/키워드: tumor suppression

검색결과 414건 처리시간 0.028초

Cell Type-Specific and Inducible PTEN Gene Silencing by a Tetracycline Transcriptional Activator-Regulated Short Hairpin RNA

  • Wang, Shan;Wang, Ting;Wang, Tao;Jia, Lintao
    • Molecules and Cells
    • /
    • 제38권11호
    • /
    • pp.959-965
    • /
    • 2015
  • Inducible and reversible gene silencing in desired types of cells is instrumental for deciphering gene functions using cultured cells or in vivo models. However, efficient conditional gene knockdown systems remain to be established. Here, we report the generation of an inducible expression system for short hairpin RNA (shRNA) targeted to PTEN, a well-documented dual-specificity phosphatase involved in tumor suppression and ontogenesis. Upon induction by doxycycline (DOX), the reverse tetracycline transcriptional activator (rtTA) switched on the concomitant expression of GFP and a miR-30 precursor, the subsequent processing of which released the embedded PTEN-targeted shRNA. The efficacy and reversibility of PTEN knockdown by this construct was validated in normal and neoplastic cells, in which PTEN deficiency resulted in accelerated cell proliferation, suppressed apoptosis, and increased invasiveness. Transgenic mice harboring the conditional shRNA-expression cassette were obtained; GFP expression and concurrent PTEN silencing were observed upon ectopic expression of rtTA and induction with Dox. Therefore, this study provides novel tools for the precise dissection of PTEN functions and the generation of PTEN loss of function models in specific subsets of cells during carcinogenesis and ontogenesis.

Short-term Treatment of Daumone Improves Hepatic Inflammation in Aged Mice

  • Park, Jong Hee;Ha, Hunjoo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제19권3호
    • /
    • pp.269-274
    • /
    • 2015
  • Chronic inflammation has been proposed as one of the main molecular mechanisms of aging and age-related diseases. Although evidence in humans is limited, short-term calorie restriction (CR) has been shown to have anti-inflammatory effects in aged experimental animals. We reported on the long-term treatment of daumone, a synthetic pheromone secreted by Caenorhabditis elegans in an energy deficient environment, extends the life-span and attenuates liver injury in aged mice. The present study examined whether late onset short-term treatment of daumone exerts anti-inflammatory effects in the livers of aged mice. Daumone was administered orally at doses of 2 or 20 mg/kg/day for 5 weeks to 24-month-old male C57BL/6J mice. Increased liver macrophage infiltration and gene expression of proinflammatory cytokines in aged mice were significantly attenuated by daumone treatment, suggesting that short-term oral administration of daumone may have hepatoprotective effects. Daumone also dose-dependently suppressed tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$ )-induced nuclear factor-${\kappa}B$ (NF-${\kappa}B$) phosphorylation in HepG2 cells. The present data demonstrated that short-term treatment of daumone has anti-inflammatory effects in aged mouse livers possibly through suppression of NF-${\kappa}B$ signaling and suggest that daumone may become a lead compound targeting aging and age-associated diseases.

Adenophorae Radix Attenuates Mast Cell-mediated Allergic Inflammation through Down-regulation of NF-κB/ Caspase-1 Activation

  • Myung, Noh-Yil
    • 한국자원식물학회지
    • /
    • 제33권6호
    • /
    • pp.659-665
    • /
    • 2020
  • Adenophorae Radix (AR) has been used as a traditional medicine for various diseases. However, the regulatory mechanisms of AR in allergic inflammation are not yet understood. The present study was conducted to investigate the effect and mechanisms of AR on the mast cell-mediated allergic response. To determine the pharmacological mechanisms of AR in allergic inflammation, we evaluated the effects of AR on the production of tumor necrosis factor (TNF)-α, interleukin (IL)-6, IL-1β and IL-8 as well as the activation of nuclear factor-κB (NF-κB) and caspase-1 in phorbol 12-myristate 13-acetate plus calcium ionophore A23187 (PMACI)-stimulated human mast cells (HMC-1). Our results demonstrated that AR effectively attenuated the PMACI-induced production of TNF-α, IL-6, IL-1β and IL-8 in stimulated HMC-1. Additionally, we showed that the inhibitory effect of AR on inflammatory cytokines in PMACI-stimulated HMC-1 cells involved the suppression of the activation NF-kB/caspase-1 in PMACI-stimulated HMC-1. Collectively, these findings provide experimental evidence that AR may be a useful candidate for the treatment of allergic inflammation.

Current and Future Molecular Mechanism in Inflammation and Arthritis

  • Sharma, Vikash;Tiwari, Raj Kumar;Shukla, Shiv Shankar;Pandey, Ravindra Kumar
    • 대한약침학회지
    • /
    • 제23권2호
    • /
    • pp.54-61
    • /
    • 2020
  • Inflammation is an immune response of the human body but excessive inflammation is taken as a major factor in the development of many diseases including autoimmune disorders, cancer and nerve disorders etc. In this regards the need is to suppress the inflammatory response. Suppression of extra or imperfect inflammatory response is not a big deal provided there is an exact knowledge of particular target in the body. Recent advancements in Pharmacological aspect made the therapy with improved outcomes in number of patients. Anticytokine therapy might be one of the important and novel approaches for inflammation and Arthritis. This can be achieved only when we go through the pathophysiology of expression and identification of mediators. Let's take an example of cytokine like interleukins (IL), chemokines, interferons (INF), tumor necrosis factors (TNF-α), growth factors, and colony stimulating factors) release pathway which is a major signalling protein in inflammatory response. In the present study we have reviewed the recent pharmacological therapeutic advancement, inflammatory mediators, receptors, and major signalling pathways. Such information will not only provide the idea about the mechanism of action of Pharmaceuticals and molecular targets but also it provides a new aspect for drug designing and new corrective approaches in existing clinical medicines. This study will be a source of good information for the researchers working in the area of drug designing and molecular Pharmacology especially in anti-inflammatory and anti arthritic medicines for target based therapy.

LPS로 활성화된 복강 대식세포에서 신이 추출물의 염증성 사이토카인 및 NO 억제 효과 (Water Extract of Flowers of Magnolia Denudata Inhibits LPS-induced Nitric Oxide and Pro-inflammatory Cytokines Production in Murine Peritoneal Macrophage by Inhibiting $NF-{\kappa}B$ Activation)

  • 김도윤;정원석;문형철;박성주
    • 동의생리병리학회지
    • /
    • 제21권4호
    • /
    • pp.916-920
    • /
    • 2007
  • Flowers of Magnolia denudata has been reported to possess a variety of pharmacological activities. In this study, we investigated the anti-inflammatory effects and mechanism of the water extract of Flowers of Magnolia denudata(MD) in lipopolysacchride (LPS)-mediated inflammatory mediators in murine peritoneal macrophages. MD itself does not have any toxic effects in murine peritoneal macrophages. MD inhibits LPS-induced nitric oxide (NO), tumor necrosis factor $(TNF)-{\alpha}$, IL-6 and IL-12 production in murine peritoneal macrophages. Furthermore, we have found that MD inhibited LPS-induced $NF-{\kappa}B$ but not c-Jun N-terminal kinase (JNK), p38 and extracellular signal-ragulated kinase (ERK) activation. These results suggested that MD inhibit LPS-induced production of $TNF-{\alpha}$, IL-6 and IL-12 via suppression of the $NF-{\kappa}B$ activation.

The Role of Modern Radiotherapy Technology in the Treatment of Esophageal Cancer

  • Moon, Sung Ho;Suh, Yang-Gun
    • Journal of Chest Surgery
    • /
    • 제53권4호
    • /
    • pp.184-190
    • /
    • 2020
  • Radiation therapy (RT) has improved patient outcomes, but treatment-related complication rates remain high. In the conventional 2-dimensional and 3-dimensional conformal RT (3D-CRT) era, there was little room for toxicity reduction because of the need to balance the estimated toxicity to organs at risk (OARs), derived from dose-volume histogram data for organs including the lung, heart, spinal cord, and liver, with the planning target volume (PTV) dose. Intensity-modulated RT (IMRT) is an advanced form of conformal RT that utilizes computer-controlled linear accelerators to deliver precise radiation doses to the PTV. The dosimetric advantages of IMRT enable better sparing of normal tissues and OARs than is possible with 3D-CRT. A major breakthrough in the treatment of esophageal cancer (EC), whether early or locally advanced, is the use of proton beam therapy (PBT). Protons deposit their highest dose of radiation at the tumor, while leaving none behind; the resulting effective dose reduction to healthy tissues and OARs considerably reduces acute and delayed RT-related toxicity. In recent studies, PBT has been found to alleviate severe lymphopenia resulting from combined chemo-radiation, opening up the possibility of reducing immune suppression, which might be associated with a poor prognosis in cases of locally advanced EC.

CROX (Cluster Regulation of RUNX) as a Potential Novel Therapeutic Approach

  • Kamikubo, Yasuhiko
    • Molecules and Cells
    • /
    • 제43권2호
    • /
    • pp.198-202
    • /
    • 2020
  • Comprehensive inhibition of RUNX1, RUNX2, and RUNX3 led to marked cell suppression compared with inhibition of RUNX1 alone, clarifying that the RUNX family members are important for proliferation and maintenance of diverse cancers, and "cluster regulation of RUNX (CROX)" is a very effective strategy to suppress cancer cells. Recent studies reported by us and other groups suggested that wild-type RUNX1 is needed for survival and proliferation of certain types of leukemia, lung cancer, gastric cancer, etc. and for their one of metastatic target sites such as born marrow endothelial niche, suggesting that RUNX1 often functions oncogenic manners in cancer cells. In this review, we describe the significance and paradoxical requirement of RUNX1 tumor suppressor in leukemia and even solid cancers based on recent our findings such as "genetic compensation of RUNX family transcription factors (the compensation mechanism for the total level of RUNX family protein expression)", "RUNX1 inhibition-induced inhibitory effects on leukemia cells and on solid cancers through p53 activation", and "autonomous feedback loop of RUNX1-p53-CBFB in acute myeloid leukemia cells". Taken together, these findings identify a crucial role for the RUNX cluster in the maintenance and progression of cancers and suggest that modulation of the RUNX cluster using the pyrrole-imidazole polyamide gene-switch technology is a potential novel therapeutic approach to control cancers.

Design, Syntheses, and Conformational Study of Angiogenesis Inhibitors

  • 박경수;백동하;임동열;박상돈;김민영;박영선;김양미
    • Bulletin of the Korean Chemical Society
    • /
    • 제22권9호
    • /
    • pp.984-988
    • /
    • 2001
  • Since anti-angiogenesis could lead to the suppression of tumor growth, angiogenesis inhibitors have received particular attention for their therapeutic potential. In this study, two angiogenic inhibitors using the bioactive sequence from the kring le 5, AK1(KLYDY), AK2(KLWDF) were designed and synthesized. We have investigated their solution structures using NMR spectroscopy and their activities as angiogenesis inhibitors. AK2 has an intramolecular hydrogen bon d between the side chain amino proton of Lys1 and the carboxyl oxygen of Asp4 with a N ${\cdot}{\cdot}{\cdot}$O distance of $3.27\AA$, while AK1 shows more flexible structures than AK2. Indole ring in Trp is much bigger than the phenyl ring in Tyr and may have good face-to-edge interaction enforcing more rigid and constrained conformational features of AK2. Because of this relatively stable structure, Trp3 in AK2 may have better hydrophobic interaction with Phe5 than Tyr3 in AK1 if two adjacent aromatic groups are located in hydrophobic pocket of receptor. Since AK2 shows the similar anti-angiogenic activities to AK1, we are also able to confirm that the activity of AK1 is irrelevant to the Tyr phosphorylation. More rigid drug with higher activities can be provided by the mimetic approaches. For the further development of the angiogenesis inhibitors, these conformational studies on our lead peptides will be helpful in design of peptidomimetics.

Effect of Lactobacillus Fermentation on the Anti-Inflammatory Potential of Turmeric

  • Yong, Cheng Chung;Yoon, Yonghee;Yoo, Hee Sub;Oh, Sejong
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권10호
    • /
    • pp.1561-1569
    • /
    • 2019
  • Curcumin, the major bioactive constituent of turmeric, has been reported to have a wide range of pharmacological benefits; however, the low solubility in water has restricted its systemic bioavailability and therapeutic potential. Therefore, in the current study, we aimed to investigate the effect of turmeric fermentation on its curcumin content and anti-inflammatory activity by using several lactic acid bacteria. Fermentation with Lactobacillus fermentum significantly increased the curcumin content by 9.76% while showing no cytotoxicity in RAW 246.7 cells, as compared to the unfermented turmeric, regardless of the concentration of L. fermentum-fermented turmeric. The L. fermentum-fermented turmeric also promoted cell survival; a significantly higher number of viable cells in lipopolysaccharide (LPS)-induced RAW 264.7 cells were observed as compared to those treated with unfermented turmeric. It also displayed promising DPPH scavenging ($7.88{\pm}3.36%$) and anti-inflammatory activities by significantly reducing the nitrite level and suppressing the expression of the pro-apoptotic tumor necrosis factor-alpha and Toll-like receptor-4 in LPS-induced RAW 264.7 cells. Western blot analysis further revealed that the anti-inflammatory activity of the fermented turmeric was exerted through suppression of the c-Jun N-terminal kinase signal pathway, but not in unfermented turmeric. Taken together, the results suggested that fermentation with lactic acid bacteria increases the curcumin content of turmeric without increasing its cytotoxicity, while strengthening the specific pharmacological activity, thus, highlighting its potential application as a functional food ingredient.

Ubiquitin E3 ligases controlling p53 stability

  • Lee, Seong-Won;Seong, Min-Woo;Jeon, Young-Joo;Chung, Chin-Ha
    • Animal cells and systems
    • /
    • 제16권3호
    • /
    • pp.173-182
    • /
    • 2012
  • The p53 protein plays a pivotal role in tumor suppression. The cellular level of p53 is normally kept low by proteasome-mediated degradation, allowing cell cycle progression and cell proliferation. Under stress conditions, such as DNA damage, p53 is stabilized and activated through various post-translational modifications of itself as well as of its regulatory proteins for induction of the downstream genes responsible for cell cycle arrest, DNA repair, and apoptosis. Therefore, the level of p53 should be tightly regulated for normal cell growth and for prevention of the accumulation of mutations in DNA under stress conditions, which otherwise would lead to tumorigenesis. Since the discovery of Mdm2, a critical ubiquitin E3 ligase that destabilizes p53 in mammalian cells, nearly 20 different E3 ligases have been identified and shown to function in the control of stability, nuclear export, translocation to chromatin or nuclear foci, and oligomerization of p53. So far, a large number of excellent reviews have been published on the control of p53 function in various aspects. Therefore, this review will focus only on mammalian ubiquitin E3 ligases that mediate proteasome-dependent degradation of p53.