• Title/Summary/Keyword: tumor suppression

Search Result 419, Processing Time 0.022 seconds

Effects of Thujae Orientalis Folium (TOF) on Gene Expression of Human melanoma cells (SK-MEL-2) (측백엽(側柏葉)이 인간 유래 악성 흑색종 세포의 유전자 발현에 미치는 영향)

  • Jung, Min-Young;Kim, Jong-Han;Park, Su-Yeon;Choi, Jeong-Hwa
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.23 no.2
    • /
    • pp.81-108
    • /
    • 2010
  • Objective : Thujae Orientalis Folium (TOF) can cool the blood and stop bleeding, eliminate phlegm and relieve cough in Oriental medicine. In addition, the fresh is used alone externally. Recently, TOF is known to have anti-tumor component. And also known to have tyrosinase inhibitory effect. Method : For these reasons, this study was designed to investigate anti-cancer and whitening activities of TOF. In this experiment, effects of TOF on proliferation rates of melanoma cells and on changes in genetic profiles were investigated. The genetic profile for the effect on human derived melanoma cell, SK-MEL-2, was measured using microarray technique, and the functional analysis on these genes was conducted. Results : Total 541 genes were up-regulated and 1,079 genes down-regulated in cells treated with TOF. Genes induced by TOF were mainly concerned with anti-cancer effects and apoptosis. Genes suppresed by TOF were related in extracellular signalling pathway. The network of total protein interactions was measured using cytoscape program, and some key molecules, such as THAP1, MAX1, STAM2, SMAD6, CYCS, PEX5, PSEN1, NONO, MAP2K7 and CREB1 that can be used for elucidation of therapeutical mechanism of medicine in future were identified. Conculusion : These results suggest possibility of TOF as anti-cancer drug for human melanoma. In addition, the present author also suggest that related mechanisms are involved in inhibition of several cancer pathway, activation of apoptosis pathway and suppression of general metabolic pathway.

A clinical Comparison of Lobaplatin or Cisplatin with Mitomycine and Vincristine in Treating Patients with Cervical Squamous Carcinoma

  • Li, Wei-Ping;Liu, Hui;Chen, Li;Yao, Yuan-Qing;Zhao, En-Feng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.11
    • /
    • pp.4629-4631
    • /
    • 2015
  • Background: The research was to compare the efficacy and side effects of cisplatin or lobaplatin in combination with mitomycine (MMC) and vincristine in treating patients with cervical squamous carcinoma. Materials and Methods: Cervical squamous carcinoma patients who were pathologically diagnosed with stage Ib-IIb from April 2012 to May 2013 in the general hospital of Chinese People's Libration Amy were enrolled. All patients were confirmed without prior treatment and were randomly divided into two groups, Group A and B. Efficacy and side effects were evaluated after one cycle of chemotherapy. Results: Group A (n=42) were treated with Loubo$^{(R)}$ (Lobaplatin) $50mg/m^2$, MMC $16mg/m^2$ and Vincristine $2mg/m^2$ every 21 days. Group B (n=44) were treated with Cisplatin $100mg/m^2$, MMC $16mg/m^2$ and Vincristine $2mg/m^2$ every 21 days. All 86 patients completed one cycle of chemotherapy with cisplatin or lobaplatin in combination with MMC and vincristine. No difference was observed regardiing short-term effect between two groups. Main side effects were bone marrow suppression and gastrointestinal reactions including decrease of white blood cells, platelet and nausea/vomiting. Grade III-VI liver and kidney impairment was not reported in two groups. In group A the incidence of uterine artery spasm in the process of drug delivery was significantly lower than the group B. Conclusions: Cisplatin or lobaplatin with MMC and Vincristine in the interventional treatment of cervical squamous carcinoma were effective, especially after uterine artery perfusion chemotherapy at tumor reduction and tumor downstaging period. The adverse reactions of concurrent chemotherapy are tolerable, and low physical and mental pressure even more less stimulation of vascular in treatment with lobaplatin. However, the long-term effects of this treatment need further observation.

Effect of Grape Seed Proanthocyanidins on Tumor Vasculogenic Mimicry in Human Triple-negative Breast Cancer Cells

  • Luan, Yun-Yan;Liu, Zi-Min;Zhong, Jin-Yi;Yao, Ru-Yong;Yu, Hong-Sheng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.2
    • /
    • pp.531-535
    • /
    • 2015
  • Vasculogenic mimicry (VM) refers to the unique ability of highly aggressive tumor cells to mimic the pattern of embryonic vasculogenesis, which was associated with invasion and metastasis. The grape seed proanthocyanidins (GSPs) had attracted much attention as a potential bioactive anti-carcinogenic agent. However, GSPs regulation of VM and its possible mechanisms in a triple-negative breast cancer cells (TNBCs) remain not clear. Therefore, we examined the effect of GSPs on VM information in HCC1937 cell model. In this study, we identified the VM structure via the three-dimensional (3D) matrix in vitro. Cell viability was measured using the CCK8 assay. The effects of GSPs on human triple-negative breast cancer cells (TNBCs) HCC1937 in terms of related proteins of VM information were determined using western blot analysis. In vitro, the tubular networks were found in highly invasive HCC1937 cells but not in the non-invasive MCF-7 cells when plated on matrigel. The number of vascular channels was significantly reduced when cells were exposed in GSPs ($100{\mu}g$/ml) and GSPs ($200{\mu}g/mL$) groups (all p<0.001). Furthermore, we found that treatment with GSPs promoted transition of the mesenchymal state to the epithelial state in HCC1937 cells as well as reducing the expression of Twist1 protein, a master EMT regulator.GSPs has the ability to inhibit VM information by the suppression of Twist1 protein that could be related to the reversal of epithelial-to-mesenchymal (EMT) process. It is firstly concluded that GSPs may be an p otential anti-VM botanical agent for human TNBCs.

Tumor necrosis factor-inducible gene 6 interacts with CD44, which is involved in fate-change of hepatic stellate cells

  • Wang, Sihyung;Kim, Jieun;Lee, Chanbin;Jung, Youngmi
    • BMB Reports
    • /
    • v.53 no.8
    • /
    • pp.425-430
    • /
    • 2020
  • Tumor necrosis factor-inducible gene 6 protein (TSG-6) is a cytokine secreted by mesenchymal stem cells (MSCs) and regulates MSC stemness. We previously reported that TSG-6 changes primary human hepatic stellate cells (pHSCs) into stem-like cells by activating yes-associated protein-1 (YAP-1). However, the molecular mechanism behind the reprogramming action of TSG-6 in pHSCs remains unknown. Cluster of differentiation 44 (CD44) is a transmembrane protein that has multiple functions depending on the ligand it is binding, and it is involved in various signaling pathways, including the Wnt/β-catenin pathway. Given that β-catenin influences stemness and acts downstream of CD44, we hypothesized that TSG-6 interacts with the CD44 receptor and stimulates β-catenin to activate YAP-1 during TSG-6-mediated transdifferentiation of HSCs. Immunoprecipitation assays showed the interaction of TSG-6 with CD44, and immunofluorescence staining analyses revealed the colocalization of TSG-6 and CD44 at the plasma membrane of TSG-6-treated pHSCs. In addition, TSG-6 treatment upregulated the inactive form of phosphorylated glycogen synthase kinase (GSK)-3β, which is a negative regulator of β-catenin, and promoted nuclear accumulation of active/nonphosphorylated β-catenin, eventually leading to the activation of YAP-1. However, CD44 suppression in pHSCs following CD44 siRNA treatment blocked the activation of β-catenin and YAP-1, which inhibited the transition of TSG-6-treated HSCs into stem-like cells. Therefore, these findings demonstrate that TSG-6 interacts with CD44 and activates β-catenin and YAP-1 during the conversion of TSG-6-treated pHSCs into stem-like cells, suggesting that this novel pathway is an effective therapeutic target for controlling liver disease.

Epigenetic and Glucocorticoid Receptor-Mediated Regulation of Glutathione Peroxidase 3 in Lung Cancer Cells

  • An, Byung Chull;Jung, Nak-Kyun;Park, Chun Young;Oh, In-Jae;Choi, Yoo-Duk;Park, Jae-Il;Lee, Seung-won
    • Molecules and Cells
    • /
    • v.39 no.8
    • /
    • pp.631-638
    • /
    • 2016
  • Glutathione peroxidase 3 (GPx3), an antioxidant enzyme, acts as a modulator of redox signaling, has immunomodulatory function, and catalyzes the detoxification of reactive oxygen species (ROS). GPx3 has been identified as a tumor suppressor in many cancers. Although hyper-methylation of the GPx3 promoter has been shown to down-regulate its expression, other mechanisms by which GPx3 expression is regulated have not been reported. The aim of this study was to further elucidate the mechanisms of GPx3 regulation. GPx3 gene analysis predicted the presence of ten glucocorticoid response elements (GREs) on the GPx3 gene. This result prompted us to investigate whether GPx3 expression is regulated by the glucocorticoid receptor (GR), which is implicated in tumor response to chemotherapy. The corticosteroid dexamethasone (Dex) was used to examine the possible relationship between GR and GPx3 expression. Dex significantly induced GPx3 expression in H1299, H1650, and H1975 cell lines, which exhibit low levels of GPx3 expression under normal conditions. The results of EMSA and ChIP-PCR suggest that GR binds directly to GRE 6 and 7, both of which are located near the GPx3 promoter. Assessment of GPx3 transcription efficiency using a luciferase reporter system showed that blocking formation of the GR-GRE complexes reduced luciferase activity by 7-8-fold. Suppression of GR expression by siRNA transfection also induced down-regulation of GPx3. These data indicate that GPx3 expression can be regulated independently via epigenetic or GR-mediated mechanisms in lung cancer cells, and suggest that GPx3 could potentiate glucocorticoid (GC)-mediated anti-infla-mmatory signaling in lung cancer cells.

Resveratrol Inhibits IL-6-Induced Transcriptional Activity of AR and STAT3 in Human Prostate Cancer LNCaP-FGC Cells

  • Lee, Mee-Hyun;Kundu, Joydeb Kumar;Keum, Young-Sam;Cho, Yong-Yeon;Surh, Young-Joon;Choi, Bu Young
    • Biomolecules & Therapeutics
    • /
    • v.22 no.5
    • /
    • pp.426-430
    • /
    • 2014
  • Prostate cancer is the most frequently diagnosed cancer. Although prostate tumors respond to androgen ablation therapy at an early stage, they often acquire the potential of androgen-independent growth. Elevated transcriptional activity of androgen receptor (AR) and/or signal transducer and activator of transcription-3 (STAT3) contributes to the proliferation of prostate cancer cells. In the present study, we examined the effect of resveratrol, a phytoalexin present in grapes, on the reporter gene activity of AR and STAT3 in human prostate cancer (LNCaP-FGC) cells stimulated with interleukin-6 (IL-6) and/or dihydrotestosterone (DHT). Our study revealed that resveratrol suppressed the growth of LNCaP-FGC cells in a time- and concentration-dependent manner. Whereas the AR transcriptional activity was induced by treatment with either IL-6 or DHT, the STAT3 transcriptional activity was induced only by treatment with IL-6 but not with DHT. Resveratrol significantly attenuated IL-6-induced STAT3 transcriptional activity, and DHT- or IL-6-induced AR transcriptional activity. Treatment of cells with DHT plus IL-6 significantly increased the AR transcriptional activity as compared to DHT or IL-6 treatment alone and resveratrol markedly diminished DHT plus IL-6-induced AR transcriptional activity. Furthermore, the production of prostate-specific antigen (PSA) was decreased by resveratrol in the DHT-, IL-6- or DHT plus IL-6-treated LNCaP-FGC cells. Taken together, the inhibitory effects of resveratrol on IL-6- and/or DHT-induced AR transcriptional activity in LNCaP prostate cancer cells are partly mediated through the suppression of STAT3 reporter gene activity, suggesting that resveratrol may be a promising therapeutic choice for the treatment of prostate cancer.

Ethanol-eluted Extract of Rhus verniciflua Stokes Inhibits Cell Growth and Induces Apoptosis in Human Lymphoma Cells

  • Lee, Jeong-Chae;Kim, Ju;Jang, Yong-Suk
    • BMB Reports
    • /
    • v.36 no.4
    • /
    • pp.337-343
    • /
    • 2003
  • Rhus verniciflua Stokes (RVS) has been used as a traditional herbal medicine. Several earlier studies indicated that an ethanol extract of RVS has both anti-oxidant and anti-tumor properties, although the mechanism for the activity remains to be elucidated. In this report, we prepared a highly purified ethanol extract from RVS, named REEE-1 ($\underline{R}$hus $\underline{e}$thanol $\underline{e}$luted $\underline{e}$xtract-1), and investigated the mechanism involved in its growth-inhibitory effect on the human B and T lymphoma cell lines, BJAB and Jurkat, respectively. Results from tritium uptake proliferation assays showed that the proliferative capacities of both BJAB and Jurkat cells were strongly suppressed in the presence of REEE-1. This was further confirmed through trypan blue exclusion experiments that revealed a dose-dependent decrease in viable cell numbers after REEE-1 treatment. REEE-1-mediated suppression of cell growth was verified to be apoptotic, based on the increase in DNA fragmentation, low fluorescence intensity in nuclei after propidium iodide staining, and the appearance of DNA laddering. In particular, REEE-1 exerted its anti-oxidant activity through the inhibition of hydroxyl radical-mediated degradation by iron ion chelation rather than direct scavenging of hydroxyl radicals. Furthermore, REEE-1 was revealed to be a potential scavenger of superoxide anions. Collectively, our findings suggest that REEE-1 is a natural anti-oxidant that could be used as a cancer chemo-preventive and therapeutic agent.

Tas13D Inhibits Growth of SMMC-7721 Cell via Suppression VEGF and EGF Expression

  • He, Huai-Zhen;Wang, Nan;Zhang, Jie;Zheng, Lei;Zhang, Yan-Min
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.5
    • /
    • pp.2009-2014
    • /
    • 2012
  • Objective: Taspine, isolated from Radix et Rhizoma Leonticis has demosntrated potential proctiective effects against cancer. Tas13D, a novel taspine derivative synthetized by structure-based drug design, have been shown to possess interesting biological and pharmacological activities. The current study was designed to evaluate its antiproliferative activity and underlying mechanisms. Methods: Antiproliferative activity of tas13D was evaluated by xenograft in athymic mice in vivo, and by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) and cell migration assays with human liver cancer (SMMC-7721) cell lines in vitro. Docking between tas13D and VEGFR and EGFR was studied by with a Sybyl/Surflex module. VEGF and EGF and their receptor expression was determined by ELISA and real-time PCR methods, respectively. Results: Our present study showed that tas13D inhibited SMMC-7721 xenograft tumor growth, bound tightly with the active site of kinase domains of EGFR and VEGFR, and reduced SMMC-7721 cell proliferation (IC=34.7 ${\mu}mol/L$) and migration compared to negative controls. VEGF and EGF mRNAs were significantly reduced by tas13D treatment in a dose-dependent manner, along with VEGF and EGF production. Conclusion: The obtained results suggest that tas13D inhibits tumor growth and cell proliferation by inhibiting cell migration, downregulating mRNA expression of VEGF and EGF, and decreasing angiogenic factor production. Tas13D deserves further consideration as a chemotherapeutic agent.

Effect of DHU001, a Polyherbal Formula on Formalin-induced Paw Chronic Inflammation of Mice

  • Cho, Yoon-Hee;Chung, In-Kwon;Cheon, Woo-Hyun;Lee, Hyeung-Sik;Ku, Sae-Kwang
    • Toxicological Research
    • /
    • v.27 no.2
    • /
    • pp.95-102
    • /
    • 2011
  • The effect of DHU001, a mixed herbal formula consisted of 7 types aqueous extracts for various respiratory disorders were evaluated on the formalin-induced paw chronic inflammation in mice after oral administration. Mice were subaponeurotically injected in the left hind paw with 0.02 ml of 3.75% formalin, then subjected to 500, 250 and 125 mg/kg of DHU001 oral administration, once a day for 10 days during which then the hind-paw thickness and volume were measured daily. The paw wet-weight, histological profiles, histomorphometrical analyses and paw tumor necrosis factor (TNF)-${\alpha}$ contents were conducted at termination. After two formalin treatments, a marked increase in the paw thickness and volume was detected in the formalin-injected control as compared with that in the intact control, plus at the time of sacrifice the paw wet-weights, paw TNF-${\alpha}$ contents were also dramatically increased with severe chronic inflammation signs at histopathological observations. However, these formalin-induced chronic inflammatory changes were dramatically decreased by treatment of dexamethasone and all three different dosages of DHU001. DHU001 has favorable effects on formalin-induced chronic inflammation mediated by TNF-${\alpha}$ suppression, and DHU001 may represent an alternative approach for the treatment of chronic inflammatory diseases.

Effects of Root Extracts from Angelica gigas and Angelica acutiloba on Inflammatory Mediators in Mouse Macrophages

  • Yoon, Tae-Sook;Cheon, Myeoung-Sook;Lee, Do-Yeon;Moon, Byeong-Cheol;Lee, Hye-Won;Choo, Byung-Kil;Kim, Ho-Kyoung
    • Journal of Applied Biological Chemistry
    • /
    • v.50 no.4
    • /
    • pp.264-269
    • /
    • 2007
  • Root extracts of Angelica gigas and A. acutiloba have been used traditionally for the treatment of gynecological diseases, as well as anemia, blood stasis, and inflammatory pain, as blood tonics in Oriental medicine. In the present study, we investigated the effects of A. gigas and A. acutiloba on inflammatory mediators in mouse macrophages and compared their activities. Many studies suggest that prostaglandin $E_2$ ($PGE_2$) biosynthesis and nitric oxide (NO) production play important roles in the processes of both inflammation and carcinogenesis. Ethanolic extracts from the roots of both species exhibited significant inhibitory effects on $PGE_2$ generation in lipopolysaccharide-stimulated RAW 264.7 cells. In particular, the extract from A. gigas was more effective than that from A. acutiloba. Although neither inhibited NO generation, the extract from A. acutiloba stimulated NO generation. Our results suggest that the roots of A. gigas might possess more anti-inflammatory and/or cancer chemopreventative activity than that of A. acutiloba due to the suppression of cyclooxygenase-2 (COX2)-mediated $PGE_2$ production. In addition, A. acutiloba might exert anti-tumor activity through an increase in macrophage-produced NO.