• Title/Summary/Keyword: tumor necrosis factor-a

Search Result 1,872, Processing Time 0.033 seconds

IL-1 AND TNF-α RELEASE IN HUMAN POLYMORPHONUCLEAR LEUKOCYTES AFTER EXPOSURE TO CALCIUM HYDROXIDE TREATED Porphyromonas endodontalis LIPOPOLYSACCHARIDE (수산화칼슘 처리된 Porphyromonas endodontalis Lipopolysaccharide가 다형핵백혈구의 IL-1과 TNF-α 생성에 미치는 영향에 관한 연구)

  • Park, Chan-Je;Park, Dong-Sung;Yoo, Hyeon-Mee;Oh, Tae-Seok;Lim, Sung-Sam
    • Restorative Dentistry and Endodontics
    • /
    • v.27 no.5
    • /
    • pp.463-472
    • /
    • 2002
  • Bacterial lipopolysaccharide (LPS) plays a major role in stimulating the synthesis and release of the principal osteoclast-activating cytokines, namely, interleukin 1 and tumor necrosis factor-$\alpha$ from immune cells. Although rnonocytes/macrophages are the main producers of these cytokines, recent evidence has indicated that polymorphonuclear leukocytes (PMN) have the ability to release IL-1 and TNF-$\alpha$. Calcium hydroxide has been shown to be an effective medicament in root canal infections, reducing the microbial titre within the canal. It has been proposed that the therapeutic effect of Ca(OH)$_2$ may also be the result of direct inactivation of LPS. The purpose of this study was to investigate whether treatment of Porphyromonas endodontalis LPS with calcium hydroxide alters its biological action as measured by human PMN secretion of IL-1 and TNF-$\alpha$, and it was compared with Escherichia coli LPS. P. endodontalis ATCC 35406 was cultured in anaerobic condition, and LPS was extracted using the hot-phenol water extraction method and purified. Purchased E. coli LPS was also purified. 100 $\mu\textrm{g}$/ml of each LPS in pyrogen free water were incubated with 25mg/ml Ca(OH)$_2$ at 37$^{\circ}C$ for 7 days. The supernatants were subjected to ultrafiltration, and the isolates were lyophilized and weighed. PMNs were obtained from peripheral blood by centrifugation layered over Lymphoprep. The cells were resuspended (4$\times$10$^6$ cells/ml) in RPMI 1640 followed by treatment with various concentrations of LPS (0, 0.1, 1, 10$\mu\textrm{g}$/ml) for 24 hours at 37$^{\circ}C$ in 5% $CO_2$ incubator. The supernatants of cells were collected and the levels of IL-1$\alpha$, IL=1$\beta$ and TNF-$\alpha$ were measured by enzyme-linked immunosorbent assay. The results were as follows ; 1. The levels of IL-1$\alpha$, IL-1$\beta$, TNF-$\alpha$ from PMN treated with each LPS were significantly higher than those released from unstimulated PMN of the control group (p<0.05). 2. The levels of all three cytokines released from PMN stimulated with each calcium hydroxide treated LPS were significantly lower than those released from PMN stimulated with each untreated LPS (p<0.05), while they were not significantly different from those released from unstimulated PMN of the control group (p>0.05) 3. The levels of secretion for all three cytokines were affected in a dose-dependent manner in PMN stimulated with each LPS (p<0.05), but not in PMN stimulated with each calcium hydroxide treated LPS (p>0.05). 4. The levels of all three cytokines released from PMN stimulated with p. endodontalis LPS were significantly lower than those released from PMN stimulated with E coli LPS (p<0.05).

A Study on Pulmonary Toxic Effect of High-Dose Cisplatin Administered by Isolated Lung Perfusion in Dogs (잡견에서 분리폐관류 방법으로 투여된 고농도 cisplatin의 페독성에 관한 연구)

  • 김관민;한정호;김주현
    • Journal of Chest Surgery
    • /
    • v.33 no.9
    • /
    • pp.697-706
    • /
    • 2000
  • Background: Isolated lung perfusion(ILP) was developed as a new treatment approach to non-resectable primary or metastatic lung cancer, because of its ability to reduce systemic toxicity while delivering high-dose chemotherapeutic agents to the target organs. This research was planned to evaluate the direct toxic effect of high-dose cisplatin to the lung tissue during isolated lung perfusion. Material and Method: Fifteen mongrel dogs were divided in the perfusate for 40 minutes. The second group was composed of 5 mongrel dogs which underwent ILP with cisplatin 2.5 mg/Kg added to the perfusate for 30 minutes and 10 minutes with washing solution without cisplatin. The third group underwent the same procedure as the second group except cisplatin 5.0 mg/Kg in the perfusate. Activities of serum angiotensin converting enzyme(ACE), tumor necrosis factor-$\alpha$(TNF-$\alpha$), and concentration of serum lactate dehydrogenase(LDH) and blood urea nitrogen/creatinine (BUN/Cr) were analyzed in each groups at the time of pre-perfusion, 1 hour, 1 day, 1 week, and 2 weeks after ILP. Result: Serum ACE activities before and 1 hour, 1 day, 1 week, and 2 weeks after ILP in control group were 45.1$\pm$6.3, 44.6$\pm$9.3, 46.7$\pm$9.5, 50.8$\pm$9.1, 46.1$\pm$4.3 U/L. Those in cisplatin 2.5 and 5.0 mg/Kg groups were 49.4$\pm$12.6, 39.0$\pm$8.6, 42.3$\pm$15.9, 50.0$\pm$2.6, 53.8$\pm$8.3 and 55.5$\pm$12.3, 47.0$\pm$6.3, 45.1$\pm$6.9, 74.8$\pm$19.5, 60.2$\pm$12.0 U/L, respectively. Serum TNF-$\alpha$ activities in each group before and after ILP were 5.0$\pm$1.5 / 7.7$\pm$2.2 / 6.6$\pm$2.5 / 4.3$\pm$1.3 / 5.2$\pm$1.1(control), 8.7$\pm$1.6 / 9.9$\pm$2.2 / 7.9$\pm$1.5 / 6.3$\pm$2.2 / 7.4$\pm$2.4 (cisplatin 2.5 mg/Kg), and 6.9$\pm$0.7 / 8.9$\pm$3.4 / 7.9$\pm$4.0 / 3.3$\pm$0.9 / 5.8$\pm$1.3 pg/ml(cisplatin 5.0 mg/Kg). Mean LDH levels of each group were 225.7 / 271.3 / 328.9 / 350.8 / 255.7(control), 235.7 / 265.7 / 336.0 / 379.5 / 299.2 (cisplatin 2.5 mg/Kg), and 259.6 / 285.2 / 340.6 / 433.4 / 292.4 IU/L(cisplatin 5.0 mg/Kg). So there was no significant difference in serum ACE, TNF-$\alpha$, and LDH activity changes after ILP between the 3 groups. And, there was no significant changes in BUN/Cr in each groups, which was independent of ILP and perfused concentration of cisplatin. In addition, all dogs survived the ILP and there was no significant evidence of pulmonary vascular injury after 2 weeks of ILP with cisplatin. Conclusion: There was no harmful effect of cisplatin to the lund tissue of the mongrel dog up to 5.0 mg/Kg in perfusate. Therefore, it is perceived to be safe and effective to deliver high-dose cisplatin to the lung without pulmonary toxicity and renal damage with ILP.

  • PDF

Inhibitory effect of Hypericum ascyron on pro-inflammatory responses in lipopolysaccharide-induced Raw 264.7 Cells (Lipopolysaccharide로 유도된 Raw 264.7 cell에서 물레나물(Hypericum asctron)의 Pro-inflammatory 억제 효과)

  • Hong, Eun-Jin;Park, Hye-Jin;Kim, Na-Hyun;Jo, Jae-Bum;Lee, Jae-Eun;Lim, Su-Bin;Ahn, Dong-Hyun;Jung, Hee-Young;Cho, Young-Je
    • Journal of Applied Biological Chemistry
    • /
    • v.60 no.4
    • /
    • pp.363-372
    • /
    • 2017
  • Hypericum ascyron has long been used as medicinal plant and recent studies reported that H. ascyron has anti-diabetic, anti-oxidant, and anti-bacterial effects. In this study, inhibitory effect from H. ascyron on pro-inflammatory responses has been investigated. H. ascyron was extracted at optimal extraction condition. Total phenolic contents in water and 90% ethanol were 29.75 and 31.82 mg/g, respectively. Hyaluronidase inhibitory activity of H. ascyron extracts ($50-200{\mu}g/mL$ phenolics) was 0.00-14.81% and 15.33-47.49%, respectively. In cell viability, cell toxicity was shown at concentration of $100{\mu}g/mL$ and $30{\mu}g/mL$ of water and 90% ethanol extract. Therefore, $10-50{\mu}g/mL$ in water extracts and $5-20{\mu}g/mL$ in ethanol extracts was selected each for further study. Inducible nitric oxide synthase (iNOS) derived nitric oxide (NO) and cyclooxygenase (COX)-2-derived prostaglandin $E_2$ ($PGE_2$) protein expression inhibitory effect of extracts were inhibited in a dose dependent manner, significantly. Also, the pro-inflammatory cytokines inhibitory effect such as tumor necrosis $factor-{\alpha}$, nterleukin (IL)-6 and $IL-1{\beta}$ were decreased in the dose dependent manner. The results indicate that H. ascyron extracts reduced inflammatory responses in lipopolysaccharide-induced 264.7 cells via the regulation of the iNOS, COX-2, NO, $PGE_2$, and pro-inflammatory cytokines. Therefore, H. ascyron extracts have significant anti-inflammatory effect and a source as therapeutic materials.

Lymphotoxin β Receptor Stimulation Is Linked to MLCK Activity and Suppresses Stress Fiber Formation in Agonistic Anti-LTβR Antibody-stimulated Fibroblastic Reticular Cells (FRC에서 agonistic anti-LTβR antibody의 LTβR 자극은 MLCK 연관성 및 stress fiber 형성에 대한 강력한 억제 작용)

  • Kim, Min Hwan;Lee, Jong-Hwan
    • Journal of Life Science
    • /
    • v.27 no.10
    • /
    • pp.1199-1206
    • /
    • 2017
  • The lymphotoxin ${\beta}$ receptor ($LT{\beta}R$), a member of the tumor necrosis factor receptor family, plays an important role in lymphoid tissue's architecture and organogenesis. We found that $LT{\beta}R$ stimulation induced changes in stress fibers (SFs) in fibroblastic reticular cells (FRCs). MLCK and ROCK play critical roles in the regulation of SF formation in cells. The present study was performed to investigate the antifibrotic effects on SF regulation of $LT{\beta}R$ signaling, with a focus on MLCK inhibition. The effect of $LT{\beta}R$ on the SF change was analyzed using immunoblot and fluorescence assays and agonistic $anti-LT{\beta}R$ antibody-treated FRCs. In addition, we checked the level of Rho-guanosine diphosphate (GDP)/guanosine triphosphate (GTP) exchange activity with FRC lysate. Phospho-ezrin proteins acting as membrane-cytoskeleton linkers completely de-phosphorylated in agonistic $anti-LT{\beta}R$ antibody-treated FRCs. The actin bundles rearranged into SFs, where phospho-myosin light chain (p-MLC) co-localized in FRCs. ML7-treated FRCs completely blocked SFs and showed retraction and shrinkage processes comparable to those observed in agonistic $anti-LT{\beta}R$ antibody-treated cells. Inhibition of ROCK activity induced changes in the actin cytoskeleton organization; however, some SFs remained in the cells, while they were completely disrupted by MLCK inhibition with ML7. We showed that the phosphorylation of MLC was completely abolished with $LT{\beta}R$ stimulation in FRCs. When $LT{\beta}R$ was stimulated with the agonistic $anti-LT{\beta}R$ antibody, the Rho-GDP/GTP exchange activity was reduced, however, the activity was not completely abolished. Collectively, the results illustrated that MLCK was potently responsible for the SF regulation triggered via $LT{\beta}R$ signaling in FRCs.

Euphorbiae Immifusae Sensitizes Apoptosis of TRAIL-resistant Human Gastric Adenocarcinoma AGS Cells (지금초 추출물에 의한 TRAIL 저항성 인체위암세포의 세포사멸 유도)

  • Lee, Jae-Jun; Shin, Dong-Hyuk;Park, Sang-Eun;Kim, Won-Il;Park, Dong-Il;Choi, Yung-Hyun;Hong, Sang-Hoon
    • Journal of Life Science
    • /
    • v.18 no.1
    • /
    • pp.120-128
    • /
    • 2008
  • The death ligand tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)/ Apo1L is a cytokine that activates apoptosis through cell surface death receptors. TRAIL has sparked growing interest in oncology due to its reported ability to selectively trigger cancer cell death. Euphorbiae humifusae Wind has been used in traditional Oriental medicine as a folk remedy used for the treatment of cancer. However, the mechanism responsible for the anticancer effects of E. humifusae not clearly understood. Here, we show that treatment with subtoxic doses of water extract of E. humifusae (WEEH) in combination with TRAIL induces apoptosis in TRAIL-resistant human gastric carcinoma AGS cells. Combined treatment with WEEH and TRAIL induced chromatin condensation and sub-G1 phase DNA content. These indicators of apoptosis were correlated with the induction of caspase activity that resulted in the cleavage of poly (ADP-ribose) polymerase. Combined treatment also triggered the loss of mitochondrial membrane potential. Furthermore, co-treatment with WEEH and TRAIL down-regulated the protein levels of the anti-apoptotic proteins such as Bcl-2, Bcl-xL, XIAP and cIAP-1. Although more study will be needed to examine the detailed mechanisms, this combined treatment may offer an attractive strategy for safely treating gastric adenocarcinomas and the results provide important new insights into the possible molecular mechanisms of the anticancer activity of E. humifusae.

Compound K (CK) Rich Fractions from Korean Red Ginseng Inhibit Toll-like Receptor (TLR) 4- or TLR9-mediated Mitogen-activated Protein Kinases Activation and Pro-inflammatory Responses in Murine Macrophages (고려홍삼으로부터 분리한 compound K 함유분획에 의한 대식세포의 toll-like receptor-의존성 신호전달로 활성조절 분석)

  • Yang, Chul-Su;Ko, Sung-Ryong;Cho, Byung-Goo;Lee, Ji-Yeon;Kim, Ki-Hye;Shin, Dong-Min;Yuk, Jae-Min;Sohn, Hyun-Joo;Kim, Young-Sook;Wee, Jae-Joon;Do, Jae-Ho;Jo, Eun-Kyeong
    • Journal of Ginseng Research
    • /
    • v.31 no.4
    • /
    • pp.181-190
    • /
    • 2007
  • Compound K (CK), a protopanaxadiol ginsenoside metabolite, was previously shown to have immunomodulatory effects. In this study, we isolated the CK rich fractions (CKRF) from Korean Red Ginseng and investigated the regulation of CKRF-mediated inflammatory signaling during Toll-like receptor (TLR)-mediated cellular activation. Among various TLR ligands, CKRF considerably abrogated TLR4- or TLR9-induced inflammatory signaling. Both LPS and CpG-containing oligodeoxynucleotides (CpG-ODN) stimulation rapidly activates mitogen-activated protein kinases [MAPKs; extracellular signal-regulated kinases 1/2 and p38], NF-${\kappa}B$, and expression of pro-inflammatory cytokines tumor necrosis factor-${\alpha}$, and interleukin-6 in murine bone marrow-derived macrophages (BMDMs) in a time- and dose-dependent manner. Of interest, pre-treatment of CKRF in either LPS/TLR4- or CpG-ODN/TLR9-stimulated macrophages substantially attenuated the LPS-induced inflammatory cytokine production and mRNA expressions, as well as MAPK and NF-${\kappa}B$ activation. To our knowledge, this is the first description of the inhibitory roles for CKRF in TLR4- or TLR9-associated signaling in BMDMs. Collectively, these results demonstrate that CKRF specifically modulates distinct TLR4 and TLR9-mediated inflammatory responses, and further studies are urgently needed for their in vivo roles for potential therapeutic uses, such as in systemic inflammatory syndromes.

Spontaneous and Stimulated Release of the TNF-$\alpha$, IL-1$\beta$, IL-6 and IL-8 of Alveolar Macrophages in the Patients with Pulmonary Tuberculosis (폐결핵 환자의 폐포 대식세포에서 TNF-$\alpha$, IL-1$\beta$, IL-6 및 IL-8의 분비에 관한 연구)

  • Cheon, Seon-Hee
    • Tuberculosis and Respiratory Diseases
    • /
    • v.45 no.5
    • /
    • pp.942-952
    • /
    • 1998
  • The aim of this study was to evaluate spontaneous and LPS stimulated proinflammatory cytokines and chemokine release of alveolar macrophages in the patients with pulmonary tuberculosis and healthy individuals, as a control. Alveolar macrophages recovered from bronchoalveolar lavage fluids were cultured with or without LPS 0.1, 1, or 10 ${\mu}g/ml$ for 24 and 48 hours in 37C, 5% CO2. TNF-$\alpha$, IL-1$\beta$, IL-6 and IL-8 amount were evaluated using ELISA kit from the supernatants. There were a significant increase in the spontaneous 24 hours release of TNF-$\alpha$ and IL-6 from the involved segments of tuberculosis patients compared with uninvolved segments and normal control There were also increasing trends of release of them after LPS stimulation in involved segments, but not significant. IL-1$\beta$ and IL-8 were not evaluated from the involved segments of tubeculosis and there were not significant differences of them between uninvolved segments of tuberculosis and normal control. It is concluded that cytokine release of alveolar macrophages in the pulmonary tuberculosis was markedly increased, and it was localized to the alveolar macrophages from the involved segments.

  • PDF

Antioxidant and Inhibitory Effects of Korean Panax ginseng Extract on Pro-inflammatory Mediators in LPS-stimulated RAW264.7 Macrophages (산양삼(Korean Panax ginseng) 추출물의 항산화 효과 및 LPS로 염증이 활성화된 RAW 264.7 대식세포에서의 염증매개물질 억제효과)

  • Kim, Ye-Jin;Son, Dae-Yeul
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.10
    • /
    • pp.1371-1377
    • /
    • 2012
  • Biological activities of Korean Panax ginseng 55% ethanol extract (KPGE) were investigated. The measured total polyphenol content of KPGE was 357.45 mg/100 g. KPGE showed the highest ${\alpha},{\alpha}$-diphenyl-${\beta}$-picrylhydrazyl (DPPH) and 2,2'-azino-bis-3-ethylbenzo-thiazoline-6-sulfonic acid (ABTS) radical scavenging activities of 80% and 86% at 1,000 ${\mu}g/mL$, respectively. DPPH and ABTS radical scavenging activities significantly increased in a KPGE concentration-dependent manner. SOD-like activity of KPGE (1, 10, and 100 ${\mu}g/mL$) increased from 22% up to 33% at KPGE concentrations of 500 and 1,000 ${\mu}g/mL$. KPGE treatment significantly suppressed the generation of pro-inflammatory mediators, including nitric oxide (NO), prostaglandin $E_2$ ($PGE_2$), and cytokines (tumor necrosis factor-alpha: TNF-${\alpha}$, interleukin-6: IL-6, interleukin-$1{\beta}$: IL-$1{\beta}$), in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. KPGE demonstrated strong anti-inflammatory activity that reduced NO and $PGE_2$ production in LPS-stimulated RAW 264.7 cells. Even low concentrations of KPGE (1 and 10 ${\mu}g/mL$) reduced $PGE_2$ and NO production in RAW 264.7 macrophages without LPS-stimulation, respectively. At concentrations of 100, 500, and 1,000 ${\mu}g/mL$, TNF-${\alpha}$, IL-$1{\beta}$ and IL-6 production were significantly suppressed. The results of our study suggest the potential of Korean Panax ginseng as an excellent antioxidant substance for inhibiting inflammatory mediators. Therefore, Korean Panax ginseng (KPGE) may be used as a therapeutic approach to various inflammatory diseases.

The Ability of Anti-tumor Necrosis Factor Alpha(TNF-${\alpha}$) Antibodies Produced in Sheep Colostrums

  • Yun, Sung-Seob
    • 한국유가공학회:학술대회논문집
    • /
    • 2007.09a
    • /
    • pp.49-58
    • /
    • 2007
  • Inflammatory process leads to the well-known mucosal damage and therefore a further disturbance of the epithelial barrier function, resulting abnormal intestinal wall function, even further accelerating the inflammatory process[1]. Despite of the records, etiology and pathogenesis of IBD remain rather unclear. There are many studies over the past couple of years have led to great advanced in understanding the inflammatory bowel disease(IBD) and their underlying pathophysiologic mechanisms. From the current understanding, it is likely that chronic inflammation in IBD is due to aggressive cellular immune responses including increased serum concentrations of different cytokines. Therefore, targeted molecules can be specifically eliminated in their expression directly on the transcriptional level. Interesting therapeutic trials are expected against adhesion molecules and pro-inflammatory cytokines such as TNF-${\alpha}$. The future development of immune therapies in IBD therefore holds great promises for better treatment modalities of IBD but will also open important new insights into a further understanding of inflammation pathophysiology. Treatment of cytokine inhibitors such as Immunex(Enbrel) and J&J/Centocor(Remicade) which are mouse-derived monoclonal antibodies have been shown in several studies to modulate the symptoms of patients, however, theses TNF inhibitors also have an adverse effect immune-related problems and also are costly and must be administered by injection. Because of the eventual development of unwanted side effects, these two products are used in only a select patient population. The present study was performed to elucidate the ability of TNF-${\alpha}$ antibodies produced in sheep colostrums to neutralize TNF-${\alpha}$ action in a cell-based bioassay and in a small animal model of intestinal inflammation. In vitro study, inhibitory effect of anti-TNF-${\alpha}$ antibody from the sheep was determined by cell bioassay. The antibody from the sheep at 1 in 10,000 dilution was able to completely inhibit TNF-${\alpha}$ activity in the cell bioassay. The antibodies from the same sheep, but different milkings, exhibited some variability in inhibition of TNF-${\alpha}$ activity, but were all greater than the control sample. In vivo study, the degree of inflammation was severe to experiment, despite of the initial pilot trial, main trial 1 was unable to figure out of any effect of antibody to reduce the impact of PAF and LPS. Main rat trial 2 resulted no significant symptoms like characteristic acute diarrhea and weight loss of colitis. This study suggested that colostrums from sheep immunized against TNF-${\alpha}$ significantly inhibited TNF-${\alpha}$ bioactivity in the cell based assay. And the higher than anticipated variability in the two animal models precluded assessment of the ability of antibody to prevent TNF-${\alpha}$ induced intestinal damage in the intact animal. Further study will require to find out an alternative animal model, which is more acceptable to test anti-TNF-${\alpha}$ IgA therapy for reducing the impact of inflammation on gut dysfunction. And subsequent pre-clinical and clinical testing also need generation of more antibody as current supplies are low.

  • PDF

Inhibitory Effects of Anthocyanins Isolated from Black Soybean (Glycine max L.) Seed Coat on Degranulation and Cytokine Generation in RBL-2H3 Cells (검정콩 껍질 유래 안토시아닌의 RBL-2H3 세포에서 탈과립화와 사이토카인 생성 저해 효과)

  • Chung, Mi-Ja;Ha, Tae-Joung;Choi, Ha-Na;Lee, Ji-Sun;Park, Yong-Il
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.12
    • /
    • pp.1662-1667
    • /
    • 2011
  • Anthocyanins belong to a group of flavonoid compounds and are well known for their various health beneficial effects, which include antioxidative activities. Among them, the major anthocyanins isolated from seed coat of black soybean (Glycine max L.) were previously characterized as glycosides containing glucopyranose. Asthma is an allergic disease that is strongly associated with various immune cells, including basophils and mast cells. Eosinophils, basophils, and mast cells play important roles in allergic asthma through the release of inflammatory mediators such as asthma-specific T-helper 2 (Th2) cytokines and subsequent amplification of asthma symptoms via degranulation. Rat basophilic leukemia RBL-2H3 cells are the most common in vitro models for evaluating allergic reactions. In this study, we examined the effects of anthocyanin from seed coat of black soybean on antigen-stimulated degranulation and Th2 cytokine production in RBL-2H3 cells. Cell degranulation was evaluated by measuring the release of ${\beta}$-hexosaminidase. ${\beta}$-Hexosaminidase release and Th2 cytokine production in RBL-2H3 cells was much higher upon stimulation with IgE-antigen complex than those in untreated control cells. Anthocyanins significantly suppressed IgE-antigen complex-induced degranulation of RBL-2H3 cells and inhibited IgE-antigen complex-mediated interleukin (IL)-4, IL-13, and tumor necrosis factor ${\alpha}$ (TNF-${\alpha}$) production in RBL-2H3 cells. These findings suggest that anthocyanins from seed coat of black soybean effectively inhibit allergic reactions and may have beneficial effects against allergic asthma.