• Title/Summary/Keyword: tumor inhibition

Search Result 1,292, Processing Time 0.032 seconds

Loquat (Eriobotrya japonica) leaf extract inhibits the growth of MDA-MB-231 tumors in nude mouse xenografts and invasion of MDA-MB-231 cells

  • You, Mi-Kyoung;Kim, Min-Sook;Jeong, Kyu-Shik;Kim, Eun;Kim, Yong-Jae;Kim, Hyeon-A
    • Nutrition Research and Practice
    • /
    • v.10 no.2
    • /
    • pp.139-147
    • /
    • 2016
  • BACKGROUND/OBJECFTIVES: The present study was conducted to examine the inhibitory effect of loquat leaves on MDA-MB-231 cell proliferation and invasion. MATERIALS/METHODS: Female athymic nude mice were given a subcutaneous (s.c.) inoculation of MDA-MB-231 cells and randomly grouped to receive a s.c. injection of either 500 mg/kg ethanol, water extract or vehicle five times a week. Tumor growth, mitotic rate and necrosis were examined. MDA-MB-231 cells were cultured with DMSO or with various concentrations of loquat water or ethanol extract. Proliferation, adhesion, migration, invasion and matrix metalloproteinase (MMP) activity were examined. RESULTS: Tumor growth of xenograft nude mouse was significantly reduced by loquat extracts. The results of mitotic examination revealed that loquat extracts reduced tumor cell division. Both ethanol and water extracts significantly inhibited MDA-MB-231 cell proliferation. The protein expression of ErbB3 was significantly down-regulated by loquat leaf extracts. Loquat leaf extracts increased apoptosis of MDA-MB-231 cells following 24 hour incubation and the ethanol extract was more potent in inducing apoptosis than the water extract. Furthermore, loquat extracts inhibited adhesion, migration and invasion of MDA-MB-231 cells. MMP activity was significantly inhibited by loquat extracts. CONCLUSION: Our results show that extracts of loquat inhibit the growth of tumor in MDA-MB-231 xenograft nude mice and the invasion of human breast cancer cells, indicating the inhibition of tumor cell proliferation and invasion.

Cytotoxicity on Human Cancer Cells and Antitumorigenesis of Chungkookjang, a Fermented Soybean Product, in DMBA-Treated Rats (청국장의 암세포생장억제효과 및 흰쥐에서 DMBA 투여에 의한 유방종양발생 억제효과)

  • Kwak Chune-Shil;Kim Mee-Yeon;Kim Sung-Ae;Lee Mee-Sook
    • Journal of Nutrition and Health
    • /
    • v.39 no.4
    • /
    • pp.347-356
    • /
    • 2006
  • It is reported that a fermented soybean food, Doenjang, has srong antimutagenic and cytotoxic effect on cancer cells. This study investigated the effect of Chungkookjang, another traditional popular Korean soybean fermented food, on growth of cancer cells: HL-60, SNU-638 and MCF-7, and also its in vivo antitumorigenic effect in DMBA-induced mammary tumor rat model. For the in vitro study, Chungkookjang and steamed soybeans were extracted with ethanol and sequentially fractioned with 5 kinds of solvents differing in grades of polarity such as hexane, dichloromethane, ethylacetate, butanol and water. Almost all Chungkookjang extracts significantly inhibited the growth of HL-60 (human leukemic cancer cell), SNU-638 (human gastric cancer cell) and MCF-7 (human breast cancer cell) when compared to steamed soybean extracts. Butanol fraction of Chungkookjang extract especially showed a remarkable inhibitory effect in all the three kinds of cancer cells. To induce a mammary gland tumor, DMBA (50 mg/BW) was administered to 50 day-old female rats and followed by Chungkookjang or steamed soybean supplemented diets. Freezedried Chungkookjang powder (20% of diet in wet weight) was added to AIN-93G based diet for the Chungkookjang group of rats. Likewise, steamed soybean powder containing equal protein content to that of Chungkookjang powder was supplemented to soybean group of rats. At 13 weeks later, the mammary tumor incidence, average tumor number and tumor weight a rat were lower in Chungkookjang group compared to the control or soybean group. In conclusion, Chungkookjang showed a strong inhibitory effect on cancer cell growth in vitro, as well as a more preventive effect against chemically induced mammary tumorigenesis in vivo, while steamed soybeans did not. Therefore, these results suggest that Chungkookjang acquire its anticancer activity through the fermentation process.

Immune and Anti-oxidant Functions of Ethanol Extracts of Scutellaria baicalensis Georgi in Mice Bearing U14 Cervical Cancers

  • Peng, Yong;Guo, Cong-Shan;Li, Pan-Xia;Fu, Zhan-Zhao;Gao, Li-Ming;Di, Ya;Ju, Ya-Kun;Tian, Ru;Xue, Jia-Jia
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.10
    • /
    • pp.4129-4133
    • /
    • 2014
  • Background: The objective was to study the effect of Scutellaria baicalensis Georgi ethanol extracts (SBGE) on immune and anti-oxidant function in U14 tumor-bearing mice. Materials and Methods: U14 tumor-bearing mice were randomly divided into eight groups: a control group, a cyclophosphamide (CTX) group, three dose groups of SBGEI (high, medium, low), and three dose groups of SBGEII (high, medium, low). After two weeks, the thymus and spleen weight indices of mice bearing U14 cervical cancer were calculated. Enzyme linked immunosorbent assays (ELISA) was used to determine the levels of serum IL-2, TNF-${\alpha}$, IL-8, and PCNA. MDA activity and SOD activity in plasma were measured with detection kits. Results: In the SBGE groups, thymus weight and spleen weight indices of U14 tumor-bearing mice were significantly higher than in the control group or CTX group (p<0.05). Compared to control group, the levels of serum IL-2 and TNF-${\alpha}$ in U14 tumor-bearing mice increased significantly, whereas the contents of serum IL-8 and PCNA decreased (p<0.05). The activity of SOD increased with the growing dose of SBGE, while the activity of MDA decreased significantly in the highe-rdose groups of SBGE. Conclusions: These findings suggested that SBGE, especially at high dose, 1000 mg/kg, showed significant immune and anti-oxidant effects infU14 tumor-bearing mice, which might be the mechanisms of SBGE inhibition of tumor growth.

In vivo anti-metastatic action of Ginseng Saponins is based on their intestinal bacterial metabolites after oral administration

  • Saiki, Ikuo
    • Journal of Ginseng Research
    • /
    • v.31 no.1
    • /
    • pp.1-13
    • /
    • 2007
  • We found that the main bacterial metabolite M1 is an active component of orally administered protopanxadiol-type ginsenosides, and that the anti-metastatic effect by oral administration of ginsenosides may be primarily mediated through the inhibition of tumor invasion, migration and growth of tumor cells by their metabolite M1. Pharmacokinetic study after oral administration of ginsenoside Rb1 revealed that M1 was detected in serum for 24 h by HPLC analysis but Rb1 was not detected. M1, with anti-metastatic property, inhibited the proliferation of murine and human tumor cells in a time- and concentration-dependent manner in vitro, and also induced apoptotic cell death (the ladder fragmentation of the extracted DNA). The induction of apoptosis by M1 involved the up-regulation of the cyclin-dependent kinase(CDK) inhibitor $p27^{Kip1}$ as well as the down-regulation of a proto-oncogene product c-Myc and cyclin D1 in a time-dependent manner. Thus, M1 might cause the cell-cycle arrest (G1 phase arrest) in honor cells through the up/down-regulation of these cell-growth related molecules, and consequently induce apoptosis. The nucleosomal distribution of fluorescence-labeled M1 suggests that the modification of these molecules is induced by transcriptional regulation. Tumor-induced angiogenesis (neovascularization) is one of the most important events concerning tumor growth and metastasis. Neovascularization toward and into tumor is a crucial step for the delivery of nutrition and oxygen to tumors, and also functions as the metastatic pathway to distant organs. M1 inhibited the tube-like formation of hepatic sinusoidal endothelial (HSE) cells induced by the conditioned medium of colon 26-L5 cells in a concentration-dependent manner. However, M1 at the concentrations used in this study did not affect the growth of HSE cells in vitro.

Mechanisms of Hela Cell Apoptosis Induced by Abnormal Savda Munziq Total Phenolics Combined with Chemotherapeutic Agents

  • Zhang, Yun-Xia;Abliz, Guzalnur;Ye, Wei-Jun;Mutalipu, Zuohelaguli;Li, Xiao-Wen;Wang, Hai-Qin;Buranjiang, Gulimire;Upur, Halmurat
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.2
    • /
    • pp.743-747
    • /
    • 2014
  • Objective: To investigate the effects of abnormal Savda Munziq (ASMq) total phenolics combined with cisplatin and docetaxel on the Hela cell growth. Methods: In vivo cultured Hela cells were treated with cisplatin, docetaxel, total phenolics, cisplatin+total phenolics or docetaxel+total phenolics. MTT was performed to assess inhibition of cell proliferation, flow cytometry to detect apoptosis, and semi-quantitative RT-PCR to test for survivin and Bcl-2 expression. Results: The total phenolics, cisplatin and docetaxel had significant inhibitory and apoptosis-promoting effects on Hela cells (P<0.05), with the early apoptotic rates of $12.8{\pm}0.70%$, $18.9{\pm}3.79%$ and $15.8{\pm}3.8%$; the total phenolics, cisplatin and docetaxel significantly decreased the expression of Bcl-2 and survivin (all P<0.01), especially when used in combination. Conclusion: ASMq total phenolics, combined with cisplatin and docetaxel, could promote the apoptosis of Hela cells possibly through reducing the expression of Bcl-2 and survivin.

Anti-tumor Efficacy of a Hepatocellular Carcinoma Vaccine Based on Dendritic Cells Combined with Tumor-derived Autophagosomes in Murine Models

  • Su, Shu;Zhou, Hao;Xue, Meng;Liu, Jing-Yu;Ding, Lei;Cao, Meng;Zhou, Zhen-Xian;Hu, Hong-Min;Wang, Li-Xin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.5
    • /
    • pp.3109-3116
    • /
    • 2013
  • The majority of hepatocellular carcinoma (HCC) patients have a poor prognosis with current therapies, and new approaches are urgently needed. We have developed a novel therapeutic cancer vaccine platform based on tumor cell derived autophagosomes (DRibbles) for cancer immunotherapy. We here evaluated the effectiveness of DRibbles-pulsed dendritic cell (DC) immunization to induce anti-tumor immunity in BALB/c mouse HCC and humanized HCC mouse models generated by transplantation of human HCC cells (HepG2) into BALB/c-nu mice. DRibbles were enriched from H22 or BNL cells, BALB/c-derived HCC cell lines, by inducing autophagy and blocking protein degradation. DRibbles-pulsed DC immunization induced a specific T cell response against HCC and resulted in significant inhibition of tumor growth compared to mice treated with DCs alone. Antitumor efficacy of the DCs-DRibbles vaccine was also demonstrated in a humanized HCC mouse model. The results indicated that HCC/DRibbles-pulsed DCs immunotherapy might be useful for suppressing the growth of residual tumors after primary therapy of human HCC.

14-3-3ζ Regulates Immune Response through Stat3 Signaling in Oral Squamous Cell Carcinoma

  • Han, Xinguang;Han, Yongfu;Jiao, Huifeng;Jie, Yaqiong
    • Molecules and Cells
    • /
    • v.38 no.2
    • /
    • pp.112-121
    • /
    • 2015
  • Ectopic expression of $14-3-3{\zeta}$ has been found in various malignancies, including lung cancer, liver cancer, head and neck squamous cell carcinoma (HNSCC), and so on. However, the effect of $14-3-3{\zeta}$ in the regulation of interactions between tumor cells and the immune system has not been previously reported. In this study, we aimed to investigate whether and how $14-3-3{\zeta}$ is implicated in tumor inflammation modulation and immune recognition evasion. In oral squamous cell carcinoma (OSCC) cell lines and cancer tissues, we found that $14-3-3{\zeta}$ is overexpressed. In OSCC cells, $14-3-3{\zeta}$ knockdown resulted in the up-regulated expression of inflammatory cytokines. In contrast, $14-3-3{\zeta}$ introduction attenuated cytokine expression in human normal keratinocytes and fibroblasts stimulated with interferon-${\gamma}$ (IFN-${\gamma}$) and lipopolysaccharide (LPS). Furthermore, supernatants from $14-3-3{\zeta}$ knockdown OSCC cells dramatically altered the response of peritoneal macrophages, dendritic cells and tumor-specific T cells. Interestingly, Stat3 was found to directly interact with $14-3-3{\zeta}$ and its disruption relieved the inhibition induced by $14-3-3{\zeta}$ in tumor inflammation. Taken together, our studies provide evidence that $14-3-3{\zeta}$ may regulate tumor inflammation and immune response through Stat3 signaling in OSCC.

Gallic Acid Hindered Lung Cancer Progression by Inducing Cell Cycle Arrest and Apoptosis in A549 Lung Cancer Cells via PI3K/Akt Pathway

  • Ko, Eul-Bee;Jang, Yin-Gi;Kim, Cho-Won;Go, Ryeo-Eun;Lee, Hong Kyu;Choi, Kyung-Chul
    • Biomolecules & Therapeutics
    • /
    • v.30 no.2
    • /
    • pp.151-161
    • /
    • 2022
  • This study elucidates the anti-cancer potential of gallic acid (GA) as a promising therapeutic agent that exerts its effect by regulating the PI3K/Akt pathway. To prove our research rationale, we used diverse experimental methods such as cell viability assay, colony formation assay, tumor spheroid formation assay, cell cycle analysis, TUNEL assay, Western blot analysis, xenograft mouse model and histological analysis. Treatment with GA inhibited cell proliferation in dose-dependent manner as measured by cell viability assay at 48 h. GA and cisplatin (CDDP) also inhibited colony formation and tumor spheroid formation. In addition, GA and CDDP induced apoptosis, as determined by the distribution of early and late apoptotic cells and DNA fragmentation. Western blot analysis revealed that inhibition of the PI3K/Akt pathway induced upregulation of p53 (tumor suppressor protein), which in turn regulated cell cycle related proteins such as p21, p27, Cyclin D1 and E1, and intrinsic apoptotic proteins such as Bax, Bcl-2 and cleaved caspase-3. The anti-cancer effect of GA was further confirmed in an in vivo mouse model. Intraperitoneal injection with GA for 4 weeks in an A549-derived tumor xenograft model reduced the size of tumor mass. Injection of them downregulated the expression of proliferating cell nuclear antigen and p-Akt, but upregulated the expression of cleaved caspase-3 in tumor tissues. Taken together, these results indicated that GA hindered lung cancer progression by inducing cell cycle arrest and apoptosis, suggesting that GA would be a potential therapeutic agent against non-small cell lung cancer.

EXPRESSION AND FUNCTIONAL CHARACTERIZATION OF AMINO ACID TRANSPORT SYSTEM L IN SAOS2 HUMAN OSTEOGENIC SARCOMA CELLS (사람 골육종 세포 Saos2에서 아미노산 수송계 L의 발현 및 기능적 특성)

  • Kim, Su-Gwan;Kim, Hyun-Ho;Kim, Chang-Hyun;Kim, Do-Kyung
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.32 no.3
    • /
    • pp.200-208
    • /
    • 2006
  • Amino acids are required for protein synthesis and energy sources in all living cells. The amino acid transport system L is a major nutrient transport system that is responsible for $Na^+$-independent transport of neutral amino acids including several essential amino acids. In malignant tumors, the L-type amino acid transporter 1 (LAT1), the first isoform of system L, is highly expressed to support tumor cell growth. In the present study, the expression and functional characterization of amino acid transport system L were, therefore, investigated in Saos2 human osteogenic sarcoma cells. RT-PCR and western blot analyses have revealed that the Saos2 cells expressed the LAT1 and the L-type amino acid transporter 2 (LAT2), the second isoform of system L, together with their associating protein heavy chain of 4F2 antigen (4F2hc) in the plasma membrane, but the expression of LAT2 was very weak. The uptakes of [${14}^C$]L-leucine by Saos2 cells were $Na^+$-independent and were completely inhibited by the system L selective inhibitor, 2-aminobicyclo-(2,2,1)-heptane-2-carboxylic acid (BCH). The affinity of [${14}^C$]L-leucine uptake and the inhibition profiles of [${14}^C$]L-leucine uptake by various amino acids in the Saos2 cells were comparable with those for the LAT1 expressed in Xenopus oocytes. The majority of [${14}^C$]L-leucine uptake is, therefore, mediated by LAT1 in the Saos2 cells. These results suggest that the transports of neutral amino acids including several essential amino acids into Saos2 human osteogenic sarcoma cells are for the most part mediated by LAT1. Therefore, the Saos2 human osteogenic sarcoma cells are excellent tools for examine the properties of LAT1. Moreover, the specific inhibition of LAT1 in tumor cells might be a new rationale for anti-tumor therapy.

Radiation Response Modulation of GW572016 (EGFR/HER2 Dual Tyrosine Kinase Inhibitor) in Human Breast Cancer Xenografts (인간 유방암 세포 이식마우스에서 EGFR/HER2 복합 Tyrosine Kinase 억제제인 GW572016에 의한 방사선증진효과)

  • Kim, Yeon-Sil;Roh, Kwang-Won;Chae, Soo-Min;Mun, Seong-Kwon;Yoon, Sei-Chul;Jang, Hong-Seok;Chung, Su-Mi
    • Radiation Oncology Journal
    • /
    • v.25 no.4
    • /
    • pp.233-241
    • /
    • 2007
  • Purpose: We examined the effect of the dual EGFR/HER2 tyrosine kinase inhibitor, GW572016, on EGFR/HER2 receptor phosphorylation, inhibition of downstream signaling and radiosensitization in either an EGFR or HER2 overexpressing human breast cancer xenograft. Materials and Methods: We established SCID mice xenografts from 4 human breast cancer cell line that overexpressed EGFR or HER 2 (SUM 102, SUM 149, SUM 185, SUM 225). Two series of xenografts were established. One series was established for determining inhibition of the EGFR/HER2 receptor and downstream signaling activities by GW572016. The other series was established for determining the radiosensitization effect of GW572016. Inhibition of the receptor and downstream signaling proteins were measured by the use of immunoprecipitation and Western blotting. For determining the in vivo radiosensitization effect of GW572016, we compared tumor growth delay curves in the following four treatment arms: a) control; b) GW572016 alone; c) radiotherapy (RT) alone; d) GW572016 and RT. Results: GW572016 inhibited EGFR, HER2 receptor phosphorylation in SUM 149 and SUM 185 xenografts. In addition, the p44/42 MAPK (ERK 1/2) downstream signaling pathway was inactivated by GW572016 in the SUM 185 xenograft. In the SUM 225 xenograft, we could not observe inhibition of HER2 receptor phosphorylation by GW572016; both p44/42 MAPK (Erk1/2) and Akt downstream signal protein phosphorylation were inhibited by GW572016. GW572016 inhibited growth of the tumor xenograft of SUM 149 and SUM 185. The combination of GW572016 and RT enhanced growth inhibition greater than that with GW572016 alone or with RT alone in the SUM 149 xenograft. GW572016 appears to act as an in vivo radiosensitizer. Conclusion: GW572016 inhibited EGFR/HER2 receptor phosphorylation and downstream signaling pathway proteins. GW572016 modestly inhibited the growth of tumor in the SUM 185 xenograft and showed radiosensitization in the SUM 149 xenograft. Our results suggest that a better predictor of radiation response would be inhibition of a crucial signaling pathway than inhibition of a receptor.