• Title/Summary/Keyword: tumor inhibition

Search Result 1,292, Processing Time 0.031 seconds

Roles of Prostatic Acid Phosphatase in Prostate Cancer (Prostatic acid phosphatase의 전립선 암에서의 역할)

  • Kong, Hoon-Young;Lee, Hak-Jong;Byun, Jong-Hoe
    • Journal of Life Science
    • /
    • v.21 no.6
    • /
    • pp.893-900
    • /
    • 2011
  • Prostatic acid phosphatase (PAP) is one of the widely used biomarkers in the diagnosis of prostate cancer. It was initially identified in 1935 and is the most abundant phosphatase in the human prostate. PAP is a prostate-specific enzyme that is synthesized in prostate epithelial cells. It belongs to the acid phosphatase group that shows enzymatic activity in acidic conditions. PAP is abundant in prostatic fluid and is thought to have a role in fertilization and oligospermia. It also has a potential role in reducing chronic pain. But one of the most apparent functions of PAP is the dephosphorylation of macromolecules such as HER-2 and PI3P that are involved in the ERK1/2 and MAPK pathways, which in turn leads to inhibition of cell growth and tumorigenesis. Currently, clinical trials using PAP DNA vaccine are underway and FDA-approved immunotherapy using PAP is commercially available. Despite these clinically important aspects, molecular mechanisms underlying PAP regulation are not fully understood. The promoter region of PAP was reported to be regulated by NF-${\kappa}B$, TNF-${\alpha}$, IL-1, androgen and androgen receptors. Here, the features of PAP gene and protein structures together with the function, regulation and roles of PAP in prostate cancer are discussed.

TAp73 and ΔNp73 Have Opposing Roles in 5-aza-2'-Deoxycytidine-Induced Apoptosis in Breast Cancer Cells

  • Lai, Jing;Yang, Fang;Zhang, Wenwen;Wang, Yanru;Xu, Jing;Song, Wei;Huang, Guichun;Gu, Jun;Guan, Xiaoxiang
    • Molecules and Cells
    • /
    • v.37 no.8
    • /
    • pp.605-612
    • /
    • 2014
  • The p73 gene contains an extrinsic P1 promoter and an intrinsic P2 promoter, controlling the transcription of the pro-apoptotic TAp73 isoform and the anti-apoptotic ${\Delta}Np73$ isoform, respectively. The DNA methylation status of both promoters act equally in the epigenetic transcriptional regulation of their relevant isoforms. The aim of this study was to analyze the different effects of these p73 isoforms in 5-aza-2'-deoxycytidine (5-aza-dC)-induced apoptosis in breast cancer cells. We investigated the effects of the DNA demethylation agent, 5-aza-dC, on the T-47D breast cancer cell line, and evaluated the methylation status of the p73 promoters and expression of TAp73 and ${\Delta}Np73$. Furthermore, we assessed the expression of p53 and p73 isoforms in 5-aza-dC-treated T-47D cells and p53 knockout cells. 5-aza-dC induced significant anti-tumor effects in T-47D cells, including inhibition of cell viability, G1 phase arrest and apoptosis. This was associated with p73 promoter demethylation and a concomitant increase in TAp73 mRNA and protein expression. In contrast, the methylation status of promoter P2 was not associated with ${\Delta}Np73$ mRNA or protein levels. Furthermore, demethylation of P2 failed to inhibit the expression of ${\Delta}Np73$ with 5-aza-dC in the p53 knockdown cell model. Our study suggests that demethylation of the P1 and P2 promoters has opposite effects on the expression of p73 isoforms, namely up-regulation of TAp73 and down-regulation of ${\Delta}Np73$. We also demonstrate that p53 likely contributes to 5-aza-dC-induced ${\Delta}Np73$ transcriptional inactivation in breast cancer cells.

Spermidine Protects against Oxidative Stress in Inflammation Models Using Macrophages and Zebrafish

  • Jeong, Jin-Woo;Cha, Hee-Jae;Han, Min Ho;Hwang, Su Jung;Lee, Dae-Sung;Yoo, Jong Su;Choi, Il-Whan;Kim, Suhkmann;Kim, Heui-Soo;Kim, Gi-Young;Hong, Su Hyun;Park, Cheol;Lee, Hyo-Jong;Choi, Yung Hyun
    • Biomolecules & Therapeutics
    • /
    • v.26 no.2
    • /
    • pp.146-156
    • /
    • 2018
  • Spermidine is a naturally occurring polyamine compound that has recently emerged with anti-aging properties and suppresses inflammation and oxidation. However, its mechanisms of action on anti-inflammatory and antioxidant effects have not been fully elucidated. In this study, the potential of spermidine for reducing pro-inflammatory and oxidative effects in lipopolysaccharide (LPS)-stimulated macrophages and zebrafish was explored. Our data indicate that spermidine significantly inhibited the production of pro-inflammatory mediators such as nitric oxide (NO) and prostaglandin $E_2$ ($PGE_2$), and cytokines including tumor necrosis $factor-{\alpha}$ and $interleukin-1{\beta}$ in RAW 264.7 macrophages without any significant cytotoxicity. The protective effects of spermidine accompanied by a marked suppression in their regulatory gene expression at the transcription levels. Spermidine also attenuated the nuclear translocation of $NF-{\kappa}B$ p65 subunit and reduced LPS-induced intracellular accumulation of reactive oxygen species (ROS) in RAW 264.7 macrophages. Moreover, spermidine prevented the LPS-induced NO production and ROS accumulation in zebrafish larvae and was found to be associated with a diminished recruitment of neutrophils and macrophages. Although more work is needed to fully understand the critical role of spermidine on the inhibition of inflammation-associated migration of immune cells, our findings clearly demonstrate that spermidine may be a potential therapeutic intervention for the treatment of inflammatory and oxidative disorders.

Induction of Apoptosis and G2/M Cell Cycle Arrest by Cordycepin in Human Prostate Carcinoma LNCap Cells (Cordycepin에 의한 LNCap 인체 전립선 암세포의 apoptosis 및 G2/M arrest 유발)

  • Lee, Hye Hyeon;Hwang, Won Deok;Jeong, Jin-Woo;Park, Cheol;Han, Min Ho;Hong, Su Hyun;Jeong, Yong Kee;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.24 no.1
    • /
    • pp.92-97
    • /
    • 2014
  • Cordycepin, an active component originally isolated from the traditional medicine Cordyceps militaris, is a derivative of the nucleoside adenosine, which has been shown to possess a number of pharmacological properties, including antioxidant and anti-inflammatory activities, immunological stimulation, and antitumor effects. This study was conducted on cultured human prostate carcinoma LNCap cells to elucidate the possible mechanisms by which cordycepin exerts its anticancer activity, which, until now, has remained poorly understood. Cordycepin treatment of LNCap cells resulted in dose-dependent inhibition of cell growth and the induction of apoptotic cell death as detected by an MTT assay, cleavage of poly ADP-ribose polymerase, and annexin V-FITC staining. Flow cytometric analysis revealed that cordycepin resulted in G2/M arrest in cell cycle progression and downregulation of cyclin B1 and cyclin A expression in a concentration-dependent manner. Moreover, the incubation of cells with cordycepin caused a striking induction in the expression of the cyclin-dependent kinase (CDK) inhibitor p21Waf1/Cip1 without affecting the expression of the tumor suppressor p53. It also resulted in a significant increase in the binding of CDK2 and CDC2 to p21. These findings suggest that cordycepin-induced G2/M arrest and apoptosis in human prostate carcinoma cells is mediated through p53-independent upregulation of the CDK inhibitor p21.

Anti-Inflammatory Activity of Carthamus tinctorious Seed Extracts in Raw 264.7 cells (대식세포 내에서의 홍화자 추출물의 항염증 활성)

  • Kim, Dong-Hee;Hwang, Eun-Young;Son, Jun-Ho
    • Journal of Life Science
    • /
    • v.23 no.1
    • /
    • pp.55-62
    • /
    • 2013
  • The objective of this study was to evaluate the anti-inflammation effect of extract of Carthamus tinctorious seed, on skin obtained from Gyeong buk, Korea. Regulatory mechanisms of cytokines and nitric oxide (NO) involved in immunological activity of Raw 264.7 cells. Tested cells were pretreated with 70% ethanol extracted of Carthamus tinctorious seed and further cultured for an appropriated time after the addition of lipopolyssacharide (LPS). During the entire experimental period, 5, 10, 25 and 50 ${\mu}g/ml$ of Carthamus tinctorious seed showed no cytotoxicity. In these concentrations, ethyl acetate layer of ethanol extracted Carthamus tinctorius seed (CT-E/E) inhibited the production of NO and prostaglandin $E_2$ ($PGE_2$), tumor necorsis factor-a (TNF-${\alpha}$), interleukin-$1{\beta}$ (IL-$1{\beta}$), interleukin-6 (IL-6) expression of inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2). At a 50 ${\mu}g/ml$ level of CT-E/E, $PGE_2$, iNOS and COX-2 inhibition activity were shown 60%, 38%, and 42%, respectively. In addition, CT-E/E reduced the release of inflammatory cytokines including TNF-${\alpha}$, IL-$1{\beta}$ and IL-6. These results suggest that Carthamus tinctorious seed extracts may be a potential anti-inflammatory therapeutic agent due to the significant effects on inflammatory factors.

Total Polyphenol Contents, Flavonoid Contents, and Antioxidant Activity of Roasted-flaxseed Extracts Based on Lactic-acid Bacteria Fermentation (유산균 발효에 따른 볶은 아마씨 추출물의 폴리페놀, 플라보노이드 함량 및 항산화 활성)

  • Park, Ye-Eun;Kim, Byung-Hyuk;Yoon, Yeo-Cho;Kim, Jung-Kyu;Lee, Jun-Hyeong;Kwon, Gi-Seok;Hwang, Hak Soo;Lee, Jung-Bok
    • Journal of Life Science
    • /
    • v.28 no.5
    • /
    • pp.547-554
    • /
    • 2018
  • Flaxseed (Linum usitatissimum L.), also called linseed and one of the raw materials for making linen, is rich in omega-3 fatty acids, vegetable estrogen, ${\alpha}$-linolenic acid, and dietary fiber. Studies on flaxseed have reported various additional effects, such as the inhibition of cholesterol, blood clotting, and tumor growth. In this study, we investigated the functional components of flaxseed fermented with lactic-acid bacteria. Lactic-acid bacteria was inoculated into heat-treated (roasted) flaxseed and fermented at $37^{\circ}C$ for 72 hr. The fermented flaxseed was extracted with 70% ethanol and the antioxidant effect of the fermented extracts according to the lactic-acid bacteria was analyzed. It was confirmed that the total polyphenol contents had expanded by about 1.5-8 times, and the total flavonoid contents had increased around 1.2 times in the case of fermented flaxseed with lactic-acid bacteria compared to non-fermented flaxseed (NFFS). DPPH radical scavenging and superoxide dismutase-like activities had increased around 5.6 and 2.3 times, respectively, in the fermented flaxseed compared to the NFFS at 100 ppm concentration. The study concluded that fermentation of flaxseed with lactic-acid bacteria is possible and that it is effective to increase the antioxidant effects of flaxseed. These results can be applied to the development of improved foods and cosmetic materials.

Antitumor Effect and Immunology Activity of Seaweeds toward Sarcoma-180 (청각과 김에서 추출한 당단백질의 Sarcoma-180에 대한 항암효과 및 면역활성)

  • CHO Kyung-Ja;LEE Young-Suk;RYU Beung-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.23 no.5
    • /
    • pp.345-352
    • /
    • 1990
  • This study was investigated on the antitumor of protein-polysaccharide fraction(PPF) extracted from seaweeds such as sea-staghorn and laver toward sarcoma-180 cells. In the PPF extracted from these sewaweeds, the polysaccharide contents of sea-staghorn and laver were $62.26\%$ and $65.78\%$, respectively. The highest levels of polysaccharides found in seaweeds was fructose. The major amino acids were aspartic acid, glutamic acid, glycine and cystein. The solid tumor growth inhibition showed the highest level of $53.30\%$ when 50mg/kg sea-staghorn was administrated. The life prolongation effect was $17.35\%$ at 50 mg/kg of laver. In the effects of immunologic activity, when 100mg/kg sea-staghorn was administrated, the number of circulating leucocyte showed the highest level of $82.23\%$ but decreased leucocyte for prolonged times. The number of total peritoneal exudate cells of the sea-staghorn administerated group was increased significantly in comparison with the control group. The hematobiolgoical analysis of the experimental group was similar with that of the control group. This experiments indicated that hemeastasis still maintained nor-mal state and not showed any harmful effects in normal mice.

  • PDF

Induction of Apoptotic Cell Death by Aqueous Extract of Cordyceps militaris Through Activation of Caspase-3 in Human Hepatocarcinoma Hep3B Cells (Hep3B 간암세포에서 Caspase-3 활성화를 통한 동충하초 열수추출물의 Apoptosis 유도에 관한 연구)

  • Kim, Kyung-Mi;Park, Cheol;Seo, Sang-Ho;Hong, Sang-Hoon;Lee, Won-Ho;Choi, Yung-Hyun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.37 no.6
    • /
    • pp.714-720
    • /
    • 2008
  • Cordyceps militaris is a medicinal fungus which has been used for patient suffering from cancer in Oriental medicine. It was previously reported that C. militaris extracts are capable of inhibiting tumor growth and inducing apoptosis; however, the anti-poliferative effects of human cancer cells have been poorly understood. In this study, to elucidate the anti-cancer mechanisms of human cancer cells by treatment with aqueous extract of C. militaris (AECM), we investigated the anti-proliferative effects of AECM in human hepatocarcinoma Hep3B cells. AECM treatment inhibited the growth of Hep3B cells and induced the apoptotic cell death in a concentration-dependent manner such as formation of apoptotic bodies and increased populations of apoptotic-sub G1 phase. The induction of apoptosis by AECM was connected with a proteolytic activation of caspase-3 and caspase-8. and concomitant degradation of poly (ADP-ribose) polymerase (PARP) and ${\beta}$-catenin proteins. Furthermore, caspase-3 inhibitor, z-DEVD-fmk, significantly inhibited AECM-induced apoptosis demonstrating the important role of caspase-3 in the bserved cytotoxic effect. Taken together, these findings suggest that AECM-induced inhibition of human hepatocarcinoma cell proliferation is associated with the induction of apoptotic cell death via activation of caspase-3 and C. militaris may have therapeutic potential in human cancer.

Constitutive Activation of $p70^{S6k}$ in Cancer Cells

  • Kwon, Hyoung-Keun;Bae, Gyu-Un;Yoon, Jong-Woo;Kim, Yong-Kee;Lee, Hoi-Young;Lee, Hyang-Woo;Han, Jeung-Whan
    • Archives of Pharmacal Research
    • /
    • v.25 no.5
    • /
    • pp.685-690
    • /
    • 2002
  • The mitogen-stimulated serine/threonine kinase $p70^{S6k}$ plays an important role in the progression of cells from $G_0/G$_1$$ to S phase of the cell cycle by translational up-regulation of a family of mRNA transcripts family of mRNA transcripts which contain polypyrimidine tract at their 5 transcriptional start site. Here, we report that $p70^{S6k}$ was constitutively phosphorylated and activated to various degrees in serum-deprived AGS, A2058, HT-1376, MG63, MCF7, MDA-MB-435S, MDA-MB-231 and MB-157. Rapamycin treatment induced a significant dephosphorylation and inactivation of $p70^{S6k}$ in all cancer cell lines, while wortmannin, a specific inhibitor of PI3-K, caused a mild dephosphorylation of $p70^{S6k}$ in AGS, MDA-MB-435S and MB-157. In addition, SQ20006, methylxanthine phosphodiesterase inhibitor, reduced the phosphorylation of $p70^{S6k}$ in all cancer cells tested. Consistent with inhibitory effect of rapamycin on $p70^{S6k}$ activity, rapamycin inhibited [$^3H$]-thymidine incorporation and increased the number of cells at $G_{0}G_{1}$ phase. Furthermore, these inhibitory effects were accompanied by the decrease in growth of cancer cells. Taken together, the results indicate that the antiproliferative activity of rapamycin might be attributed to cell cycle arrest at $G_{0}G_{1}$ phase in human cancer cells through the inhibition of constitutively activated $p70^{S6k}$ of cancer cells and suggest $p70^{S6k}$ as a potential target for therapeutic strategies aimed at preventing or inhibiting tumor growth.

Comparative Study of 25 Herbal Formulas on Anti-Inflammatory Effect (한약 처방 25종에 대한 항염증 효능 비교 연구)

  • Lee, Jin-Ah;Ha, Hye-Kyung;Jung, Da-Young;Lee, Ho-Young;Lee, Jun-Kyung;Huang, Dae-Sun;Shin, Hyeun-Kyoo
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.23 no.3
    • /
    • pp.101-111
    • /
    • 2010
  • Purpose: To provide the information of efficacy for herbal formulas of high frequency, it was evaluated the anti-inflammatory effect. In many studies, plantderived anti-inflammatory efficacies have been investigated for their potential inhibitory effects on lipopolysaccharide (LPS)-stimulated macrophages. This study was performed to examine the anti-inflammatory effects of herbal formulas of high frequency on LPS-stimulated RAW 264.7 cells. Methods: Anti-inflammatory activity was investigated in 25 herbal formula extracts in vitro and in vivo. To investigate the anti-inflammatory effect in vitro model, using LPS-stimulated macrophages, RAW 264.7 cell line. The productions of nitric oxide(NO), prostaglandin(PG)$E_2$, interleukin(IL)-6 and tumor necrosis factor(TNF)-$\alpha$ were examined in RAW 264.7 cells, in the presence of the herbal formulas. RAW 264.7 cells were incubated with LPS $1\;{\mu}g/mL$ and herbal formulas for 18 hours. As an in vivo, using a rat model of carrageenin-induced paw edema. The paw volume was measured at 2 and 4 hours following carrageenin-induced paw edema in rats. Results: 8 kinds of herbal formula inhibited NO production by LPS-stimulated in some concentration, but the effect of NO inhibition is weak. 12 kinds of herbal formula inhibited $PGE_2$ production by LPS-stimulated over the 30%. Among them Gumiganghwal-tang, Sagunja-tang, Samchulkunbi-tang, Insampaedok-san and Hwangryunhaedok-tang inhibited IL-6 production by LPS-stimulated but TNF-$\alpha$ was not inhibited. 12 kinds of herbal formula reduced the carrageenin-induced paw edema in rats. Particularly, 3 kinds of herbal formula(Gumiganghwal-tang, Ssanghwa-tang and Soshiho-tang) were better than indomethacin. Conclusion: These results suggest that Gumiganghwal-tang, Sangunja-tang, Samchulkunbi-tang, Insampaedok-san and Hwangryunhaedok-tang have antiinflammatory activity.