• Title/Summary/Keyword: tumble intensity

Search Result 18, Processing Time 0.025 seconds

Optimal Gas-Flow Conditions for Stabilization of Lean-Burn Combustion (희박연소 안정화를 위한 가스유동장 조건에 관한 연구)

  • 이기형;이창식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.3
    • /
    • pp.763-770
    • /
    • 1995
  • Gas flow characteristics within the cylinder is important factors in impoving lean combustion stability. This paper shows the effects of various flow fields generated by a swirl control valve(SCV) on combustion process in a 4-valve spark ignition engine. An impulse swirl/tumble meter was used to elucidation the steady-state flow characteristics, and a rotating grating type LDV was developed to measure the mean velocity and tunbulence intensity in relation to the crank angle. These methodologies were applied to clarify the correlation between gas flow characteristics and combustion stability at a lean air fuel ratio. An analysis of the correlation revealed the gas flow conditions required to optimize a lean-burn system.

Numerical Investigation of the Effect of IR Heating on Drying Mechanism in a Tumble Dryer (열복사를 적용한 드럼 건조기의 건조 메커니즘 분석 및 성능 예측에 관한 연구)

  • Choi, Chul-Jin;Jang, Jung-Hyun;Kim, Chong-Min;Kim, Man-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.3
    • /
    • pp.219-228
    • /
    • 2010
  • A two-dimensional mathematical model was developed to predict the temperature and moisture-content profiles of a tumble dryer during infrared drying. The model is based on the movements of liquid water and moisture in the object and on the fluid and heat transfer in the drying air. The model was solved by the finite volume analysis for the fluid, temperature, and radiation intensity fields. After deriving the governing equations and developing the two-dimensional tumble dryer models, numerical investigations were carried out to examine the effects of various parameters such as the heater temperature and the heating patterns on the drying mechanism of the tumble dryer. All the results show that the drying time can be reduced by using the IR heater.

STUDY ON THE IN-CYLINDER FLOW CHARACTERISTICS OF AN SI ENGINE USING PIV

  • LEE S.-Y.;JEONG K.-S.;JEON C.-H.;CHANG Y.-J.
    • International Journal of Automotive Technology
    • /
    • v.6 no.5
    • /
    • pp.453-460
    • /
    • 2005
  • The tumble or swirl flow is used to promote mixing of air and fuel in the cylinder and to enlarge turbulent intensity in the end of the compression stroke. Since the in-cylinder flow is a kind of transient state with rapid flow variation, which is non-steady state flow, the tumble or swirl flow has not been analyzed sufficiently whether they are applicable to combustion theoretically. In the investigation of intake turbulent characteristics using PIV method, typical flow characteristics were figured out by SCV configurations. An engine installed SCV had higher vorticity and turbulent strength by fluctuation and turbulent kinetic energy than a baseline engine, especially near the cylinder wall and lower part of the cylinder. Above all, the engine with SCV 8 was superior to the others in aspect of vorticity and turbulent strength. For energy dissipation, a baseline engine had much higher energy loss than the engine installed SCV because flow impinged on the cylinder wall. Consequently, as swirl flow was added to existing tumble flow, it was found that fluctuation increased and flow energy was conserved effectively through the experiment.

A study on the Characteristics of In-Cylinder Intake Flow in Spark Ignition Engine Using the PIV

  • Lee Suk-Young;Jeong Ku-Seob;Jeon Chung-Hwan;Chang Young-June
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.704-715
    • /
    • 2005
  • In this study, to investigate in-cylinder tumble or swirl intake flow of a gasoline engine, the flow characteristics were examined with opening control valve (OCV) and several swirl control valves (SCV) which intensify intake flow through steady flow experiment, and also turbulent characteristics of in-cylinder flow field were investigated by 2-frame cross-correlation particle image velocimetry (PIV) method. In the investigation of intake turbulent characteristics using PIV method, the different flow characteristics were showed according to OCV or SCV figures. The OCV or SCV installed engine had higher vorticity and turbulent kinetic energy than a baseline engine, especially around the wall and lower part of the cylinder. Above all, SCV B type was superior to the others. About energy dissipation and reynolds shear stress distribution, a baseline engine had larger loss than OCV or SCV installed one because flow impinged on the cylinder wall. It should be concluded, from what has been said above, as swirl component was added to existing tumble flow adequately, it was confirmed that turbulent intensity was enlarged, flow energy was conserved effectively through the experiment. In other words, there is a suggestion that flow characteristics as these affected to in-cylinder combustion positively.

The Effect of Intake Port Configurations on the Turbulence Characteristics During Compression Stroke in a Motored Engine (흡입포트형상에 따른 모터링엔진내 압축과정 난류특성 연구)

  • 강건용;이진욱;정석용;백제현
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.4
    • /
    • pp.920-932
    • /
    • 1994
  • The combustion phenomena of a reciprocating engine is one of the most important processes affecting performance and emissions. One effective way to improve the engine combustion is to control the motion of the charge inside a cylinder by means of optimum induction system design, because the flame speed is mainly determined by the turbulence at compression(TDC) process in S.I. engine. It is believed that the tumble and swirl motion generated during intake breaks down into small-scale turbulence in the compression stroke of the cycle. However, the exact nature of their relationship is not well known. This paper describes cycle resolved LDV measurement of turbulent flow inside the cylinder of a 4-valve engine under motoring(non-firing) conditions, and studies the effect of intake port configurations on the turbulence characteristics using following parameters ; Eulerian temporal autocorrelation coefficient, turbulence energy spectral density function, Taylor micro time scale, integral time scale, and integral length scale.

A Numerical Study on the Turbulent Flow Characteristics Near Compression TDC is Four-Valve-Per-Cylinder Engine (4밸브기관의 압축상사점 부근의 난류특성에 관한 수치해석적 연구)

  • 김철수;최영돈
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.1 no.1
    • /
    • pp.1-13
    • /
    • 1993
  • The three-dimensional numerical analysis for in-cylinder flow of four-valve engine without intake port has been successfully computed. These computations have been performed using technique of the general coordinate transformation based on the finite-volume method and body-fitted non-orthogenal grids using staggered control volume and covariant variable as dependent one. Computations are started at intake valve opening and are carried through top-dead-center of compression. A k-$\varepsilon$model is used to represent turbulent transport of momentum. The principal study is the evolution of interaction between mean flow and turbulence and of the role of swirl and tumble in generating near TDC turbulence. Results for three different inlet flow configuration are presented. From these results, complex flow pattern may be effective for promoting combustion in spark-ignition engines and kinetic energy of mean flow near TDC is well converted into turbulent kinetic energy.

  • PDF

Concentration Distribution of Liquid/vapor Phases under In-Cylinder Flow Field with Different Injection Timings (엔진 유동장에서 분사시기에 따른 혼합기의 기ㆍ액상 농도 분포에 관한 연구)

  • 김한재;최동석;김덕줄
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.5
    • /
    • pp.96-104
    • /
    • 2001
  • The present study experimentally investigates the concentration distribution of liquid and vapor phase with different injection timings in the in-cylinder flow field of a optically accessible engine. The conventional MPI, DOHC engine was modified into DI gasoline engine. The images of liquid and vapor phases in the motoring engine were captured by using exciplex fluorescence method. Dopants used in this study were 2% fluorobenzene and 9% DEMA(diethyl-methyl-amino) in 89% solution of hexane by volume respectively. Two dimensional spray fluorescence images of liquid and vapor phases were acquired to analyze spray behaviors and fuel distribution in the in-cylinder flow field. Measurements were carried out fur four different injection timings, namely BTDC 270$^{\circ}$, 180$^{\circ}$, 90$^{\circ}$, and 50$^{\circ}$. Experimental results indicate that behaviors and distribution of vapor phase were largely affected by in-cylinder tumble flow, and mixture formation process was also greatly affected by in-cylinder flow at early injection mode and by ambient pressure at late injection mode.

  • PDF

Flow Measurements at the Exit of a Throttle Valve in Gasoline Engines (가솔린 엔진의 스로틀 밸브 출구에서 유동측정)

  • Kim, Sung-Cho;Kim, Cheol;Choi, Jong-Geon;Wee, Hwa-Bok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.2
    • /
    • pp.1-8
    • /
    • 2002
  • The flow and combustion patterns have been investigated inside the gasoline engine cylinder with the swirl or tumble flow, whereas the air flow characteristics, which are generated in the part of intake system before entering into the intake manifold, have not been known completely. It is necessary to analyze the flow field in the intake system consisting of air rater, throttle valve and intake manifold. The throttle valve, used to control the intake air flow rate, is important because it makes various mass flow rate and flow patterns. Three-dimen-sional How characteristics such as velocities, turbulent intensities and Reynolds shear stresses are measured by the hot wire anemometer at the exit of the throttle valve with the variation in the valve opening angle($15^{\circ}$, $45^{\circ}$, $75^{\circ}$ and $90^{\circ}$) and the Reynolds numbers (45000, 70000 and 140000). There are a lot of changes in flow characteristics at $75^{\circ}$ due to the large recirculation flow comparing with those of the other cases, and the streamwise velocity is especially enforced strongly below the valve shaft. The other component velocities are relatively large near the centerline parallel to the valve shaft. The effects of the Reynolds number on the flow field are not severe.