• Title/Summary/Keyword: tubular steel

Search Result 453, Processing Time 0.032 seconds

Pseudo-dynamic and cyclic loading tests on a steel-concrete vertical hybrid structure

  • Wang, Bo;Wu, Tao;Dai, Huijuan;Bai, Guoliang;Wu, Jian
    • Earthquakes and Structures
    • /
    • v.17 no.4
    • /
    • pp.399-409
    • /
    • 2019
  • This paper presents the experimental investigations on the seismic performance of a peculiar steel-concrete vertical hybrid structural system referred to as steel truss-RC tubular column hybrid structure. It is typically applied as the supporting structural system to house air-cooled condensers in thermal power plants (TPPs). Firstly, pseudo-dynamic tests (PDTs) are performed on a scaled substructure to investigate the seismic performance of this hybrid structure under different hazard levels. The deformation performance, deterioration behavior and energy dissipation characteristics are analyzed. Then, a cyclic loading test is conducted after the final loading case of PDTs to verify the ultimate seismic resistant capacity of this hybrid structure. Finally, the failure mechanism is discussed through mechanical analysis based on the test results. The research results indicate that the steel truss-RC tubular column hybrid structure is an anti-seismic structural system with single-fortification line. RC tubular columns are the main energy dissipated components. The truss-to-column connections are the structural weak parts. In general, it has good ductile performance to satisfy the seismic design requirements in high-intensity earthquake regions.

Axial compression behavior of double-skinned composite tubular columns under pure compression on concrete cores

  • Lee, Jeonghwa;Byun, Namju;Kang, Young Jong;Won, Deok Hee;Kim, Seungjun
    • Steel and Composite Structures
    • /
    • v.43 no.4
    • /
    • pp.431-445
    • /
    • 2022
  • A double-skinned composite tubular (DSCT) column, which is an internally confined concrete-filled tubular column with a hollow section, has been developed for efficient use of materials that reduce self-weight and enhance seismic performance. It exhibits excellent material behavior with ductility owing to the confinement induced by outer and inner steel tubes. This study conducted axial compression tests considering the effects of steel tube thickness and hollow diameter ratios of DSCT columns on the material behavior of confined concrete under pure axial compression on concrete cores. From the axial compression tests, various combinations of outer and inner tube thicknesses and two different hollow section ratios were considered. Additionally, confined concrete material behavior, axial strength, failure modes, and ductility of DSCT columns were evaluated. Based on this study, it was concluded that the tests show a good correlation with peak strength and shapes of nonlinear stress-strain curves presented in literature; however, the thinner outer and inner steel tubes may reduce the ductility of DSCT columns when using thinner outer and inner tubes and higher confined stress levels. Finally, the minimum thickness requirements of the steel tubes for DSCT columns were discussed in terms of strength and ductility of test specimens.

Characteristics of CFRP strengthened tubular joints subjected to different monotonic loadings

  • Prashob, P.S.;Shashikala, A.P.;Somasundaran, T.P.
    • Steel and Composite Structures
    • /
    • v.32 no.3
    • /
    • pp.361-372
    • /
    • 2019
  • Tubular joints are used in the construction of offshore structures and other land-based structures because of its ease of fabrication. These joints are subjected to different environmental loadings in their lifetime. At the time of fabrication or modification of an existing offshore platform, tubular joints are usually strengthened to withstand the environmental loads. Currently, various strengthening techniques such as ring stiffeners, gusset plates are employed to strengthen new and existing tubular joints. Due to some limitations with the present practices, some new techniques need to be addressed. Many researchers used Fibre Reinforced Polymer (FRP) to strengthen tubular joints. Some of the studies were focused on axial compression of Glass Fibre Reinforced Polymer (GFRP) strengthened tubular joints and found that it was an efficient technique. Earlier, the authors had performed studies on Carbon Fibre Reinforced Polymer (CFRP) strengthened tubular joint subjected to axial compression. The study steered to the conclusion that FRP composites is an alternative strengthening technique for tubular joints. In this work, the study was focused on axial compression of Y-joint and in plane and out of plane bending of T-joints. Experimental investigations were performed on these joints, fabricated from ASTM A106 Gr. B steel. Two sets of joints were fabricated for testing, one is a reference joint and the other is a joint strengthened with CFRP. After performing the set of experiments, test results were then compared with the numerical solution in ANSYS Parametric Design Language (APDL). It was observed that the joints strengthened with CFRP were having improved strength, lesser surface displacement and ovalization when compared to the reference joint.

Recycled aggregate concrete filled steel SHS beam-columns subjected to cyclic loading

  • Yang, You-Fu;Zhu, Lin-Tao
    • Steel and Composite Structures
    • /
    • v.9 no.1
    • /
    • pp.19-38
    • /
    • 2009
  • The present paper provides test data to evaluate the seismic performance of recycled aggregate concrete (RAC) filled steel square hollow section (SHS) beam-columns. Fifteen specimens, including 12 RAC filled steel tubular (RACFST) columns and 3 reference conventional concrete filled steel tubular (CFST) columns, were tested under reversed cyclic flexural loading while subjected to constant axially compressive load. The test parameters include: (1) axial load level (n), from 0.05 to 0.47; and (2) recycled coarse aggregate replacement ratio (r), from 0 to 50%. It was found that, generally, the seismic performance of RACFST columns was similar to that of the reference conventional CFST columns, and RACFST columns exhibited high levels of bearing capacity and ductility. Comparisons are made with predicted RACFST beam-column bearing capacities and flexural stiffness using current design codes. A theoretical model for conventional CFST beam-columns is employed in this paper for square RACFST beam-columns. The predicted load versus deformation hysteretic curves are found to exhibit satisfactory agreement with test results.

Composite action of notched circular CFT stub columns under axial compression

  • Ding, Fa-xing;Wen, Bing;Liu, Xue-mei;Wang, Hai-bo
    • Steel and Composite Structures
    • /
    • v.24 no.3
    • /
    • pp.309-322
    • /
    • 2017
  • This paper conducted both numerical and theoretical studies to investigate the composite action of notched circular concrete-filled steel tubular (CFT) stub columns under axial compression and established a theoretical method to predict their ultimate bearing capacity. 3D finite element (FE) analysis was conducted to simulate the composite action and the results were in good agreement with experimental results on circular CFT stub columns with differently oriented notches in steel tubes. Parametric study was conducted to understand the effects of different parameters on the mechanical behavior of circular CFT stub columns and also the composite action between the steel tube and the core concrete. Based on the results, a theoretical formula was proposed to calculate the ultimate bearing capacity of notched CFT stub columns under compression with consideration of the composite action between the steel tube and the core concrete.

Strength Evaluation Formulae for Ring-Stiffened Tubular X-Joints (내부 환보강 X형 관이음부의 강도산정식)

  • 조현만;류연선
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.61-68
    • /
    • 2002
  • Tubular members have been applied in a wide range of frame structures including offshore structures. For the efficient load flow in tubular-member structures, the joints of tubular members are usually reinforced using internal ring stiffener for the steel tubular joint having a large diameter. The objective of this paper is to numerically assess the behavior of X-joints with an internal ring stiffener, and to evaluate the reinforcement effect of a ring stiffener, and to establish the strength formulae. Nonlinear finite element analysis is used to compute the static strength of axially loaded tubular joints. From the numerical results, internal ring stiffener is found to be efficient in improving static strength of tubular X-joints. Maximum strength ratios are calculated as 1.5~3.5, and the effective dimensions of ring stiffener are found. Regression analyses are performed considering practical size of ring stiffener and strength estimation formulae are proposed.

  • PDF

Static Strength of Internally Ring-Stiffened Tubular T-Joints (내부 환보강 T형 관이음부의 정적강도)

  • CHO HYUN-MAN;RYU YEON-SUN
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.6 s.61
    • /
    • pp.70-78
    • /
    • 2004
  • In order to increase the load carrying capacity of tubular structures, the joints of tubular members are usually reinforced with various reinforcement system. A stiffening method with internal ring stiffeners is effectively used for the steel tubular joint with a large diameter. In this study, the behavior of internally ring-stiffened tubular T-joints subjected to axial loading is assessed. For the parametric study, nonlinear finite element analyses are used to compute the static strength on non-stiffened and ring-stiffened T-joints. Based on the numerical results, an internal ring stiffener is found to be efficient in improving the static strength. The influence of geometric parameters has been determined, and the reinforcement effect are evaluated. Based on the FE results, regression analises are performed considering the practical size of ring stiffener. Finally strength estimation formulas for ring-stiffened tubular T-joints are proposed.

A Study on the Buckling Strength and Effective Length of Tubular Member with Gusset Plate Considering End Restraints (단부구속효과를 고려한 관통 가셋트 부착 강관부재의 좌굴내력 및 유효세장비 산정에 관한 연구)

  • Kim, Woo Bum
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.2
    • /
    • pp.159-165
    • /
    • 2003
  • A tubular member with through-gusset plate is often used to transmit axial compression in an electric transmission towers. In current code, the strength of tubular member is evaluated with an effective length factor k=0.9 without considering the deformation of boundary element. A buckling strength of member with end gusset plate is affected by stiffness ratio($\beta$) and the length ratio(G) between main tubular member and end gusset plate. In this study theoretical mechanism based on the elastic buckling behavior was investigated, and finite element analysis was performed to propose a formula for the buckling strength and effective length factor of tubular member in elsatic and inelastic ranges.

Multi-response optimization of crashworthiness parameters of bi-tubular structures

  • Vinayagar, K.;Kumar, A. Senthil
    • Steel and Composite Structures
    • /
    • v.23 no.1
    • /
    • pp.31-40
    • /
    • 2017
  • This article aims at presenting multi objective optimization of parameters that affect crashworthiness characteristics of bi-tubular structures using Taguchi method with grey relational analysis. To design the experiments, the $L_9$ orthogonal array has been used and based on that, the inner tubes have been fabricated by varying the three influence factors such as reference diameter, length difference and numbers of sides of the polygon with three levels, but all the outer cylinders have the same diameter and length 90 mm and 135 mm respectively. Then, the tailor made bi-tubular steel structures were subjected into quasi static axial compression. From the test results it is found that the crushing behaviors of bi-tubular structures with different combinations were fairly significant. The important responses (crashworthiness indicators) specific energy absorption and crush force efficiency have been evaluated from load - displacement curve. Finally optimal levels of parameters were identified using grey relational analysis, and significance of parameters was determined by analysis of variance. The optimum crashworthiness parameters are reference diameter 80 mm, length difference 0 mm and number of sides of polygon is 3, i.e., triangle within the selected nine bi-tube combinations.

A comparative study of multi-objective evolutionary metaheuristics for lattice girder design optimization

  • Talaslioglu, Tugrul
    • Structural Engineering and Mechanics
    • /
    • v.77 no.3
    • /
    • pp.417-439
    • /
    • 2021
  • The geometric nonlinearity has been successfully integrated with the design of steel structural system. Thus, the tubular lattice girder, one application of steel structural systems have already been optimized to obtain an economic design following the completion of computationally expensive design procedure. In order to decrease its computing cost, this study proposes to employ five multi-objective metaheuristics for the design optimization of geometrically nonlinear tubular lattice girder. Then, the employed multi-objective optimization algorithms (MOAs), NSGAII, PESAII, SPEAII, AbYSS and MoCell are evaluated considering their computing performances. For an unbiased evaluation of their computing performance, a tubular lattice girder with varying size-shape-topology and a benchmark truss design with 17 members are not only optimized considering the geometrically nonlinear behavior, but three benchmark mathematical functions along with the four benchmark linear design problems are also included for the comparison purpose. The proposed experimental study is carried out by use of an intelligent optimization tool named JMetal v5.10. According to the quantitative results of employed quality indicators with respect to a statistical analysis test, MoCell is resulted with an achievement of showing better computing performance compared to other four MOAs. Consequently, MoCell is suggested as an optimization tool for the design of geometrically nonlinear tubular lattice girder than the other employed MOAs.