• Title/Summary/Keyword: tubular steel

Search Result 453, Processing Time 0.028 seconds

Analytical and experimental fatigue analysis of wind turbine tower connection bolts

  • Ajaei, Behrouz Badrkhani;Soyoz, Serdar
    • Wind and Structures
    • /
    • v.31 no.1
    • /
    • pp.1-14
    • /
    • 2020
  • This paper presents a method of estimation of fatigue demands on connection bolts of tubular steel wind turbine towers. The presented method relies on numerical simulation of aerodynamic loads and structural behavior of bolted connections modeled using finite element method. Variability of wind parameters is represented by a set of values derived from their probability densities, which are adjusted based on field measurements. Numerically generated stress time-series show agreement with the measurements from strain gauges inside bolts, in terms of power spectra and the resulting damage. Position of each bolt has a determining effect on its fatigue damage. The proposed framework for fatigue life estimation represents the complexities in loading and local behavior of the structure. On the other hand, the developed procedure is computationally efficient since it requires a limited number of simulations for statistically representing the wind variations.

Vibration analysis of CFST tied-arch bridge due to moving vehicles

  • Yang, Jian-Rong;Li, Jian-Zhong;Chen, Yong-Hong
    • Interaction and multiscale mechanics
    • /
    • v.3 no.4
    • /
    • pp.389-403
    • /
    • 2010
  • Based on the Model Coupled Method (MCM), a case study has been carried out on a Concrete-Filled Steel Tubular (CFST) tied arch bridge to investigate the vibration problem. The mathematical model assumed a finite element representation of the bridge together with beam, shell, and link elements, and the vehicle simulation employed a three dimensional linear vehicle model with seven independent degrees-of-freedom. A well-known power spectral density of road pavement profiles defined the road surface roughness for Perfect, Good and Poor roads respectively. In virtue of a home-code program, the dynamic interaction between the bridge and vehicle model was simulated, and the dynamic amplification factors were computed for displacement and internal force. The impact effects of the vehicle on different bridge members and the influencing factors were studied. Meanwhile the acceleration responses of some of the components were analyzed in the frequency domain. From the results some valuable conclusions have been drawn.

Fatigue Strength and Fracture Behaviour of CHS-to-RHS T-Joints Subjected to Out-of-Plane Bending

  • Bian, Li-Chun;Lim, Jae-Kyoo;Kim, Yon-Jig
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.207-214
    • /
    • 2003
  • The fatigue behaviour of six different hollow section T-joints subjected to out-of-plane bending moment was investigated experimentally using scaled steel models. The joints had circular brace members and rectangular chord members. Hot spot stresses and the stress concentration factors. (SCFs) were determined experimentally. Fatigue testing was carried out under constant amplitude loading in air. The test results have been statistically evaluated, and show that the experimental SCF values for circular-to-rectangular (CHS-to-RHS) hollow section joints were found to be below those of circular-to-circular (CHS-to-CHS) hollow section joints. The fatigue strength, referred to experimental hot spot stress, was in reasonably good agreement with referred fatigue design codes for tubular joints.

Study on the Characteristics of Western Rocker Style in Mid 20th Century (20세기 중기 서양 흔들의자의 양식적 특징)

  • Lim, Seung-Taek
    • Journal of the Korea Furniture Society
    • /
    • v.23 no.3
    • /
    • pp.271-289
    • /
    • 2012
  • This study analyzes the Western rocking chair style of the middle of the 20th century (1945~1970), and investigates academically characteristics from formative and practical points of view. The purpose of this study is to provide basic information on the design and production of the modern Korean rocking chair. In the 20th century, the production of the Western rocking chair displayed principles of both functionalism and optimism. These rocking chairs are constructed of various industrial materials including reinforced plastics, moulded plywood, aluminium, and steel as well as wood. Furthermore, a rocking chair suitable to the human body is made by industrial growth and innovative fabrication techniques such as designer's plastic from military in the First and Second World Wars. In those days, there are many different types of rocker style - traditional, plastics, structural, moulded plywood & bending, metal tubular, and wire mesh. More specifically, through economic prosperity and plastic development, the rocking chair is able to have light and bright colors, which shows sensible formality of the modern and structure.

  • PDF

이중하중을 받는 S45C의 피로거동에 관한 연구

  • 윤두연;이원석;이현우
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.04a
    • /
    • pp.268-273
    • /
    • 1992
  • Thin walled tubular specimens of 0.45% structural carbon steel were used in the bizxial tests. Biaxial fatigue tosts were conducted on strain control including fully reversed tension-compression and in phase tension torsion loadings. The predictions of the biaxial fatigue life were based upon the uniaxial low cycle fatigue test results. Fatigue lives were ranged from 10$\^$2/to 10$\^$5/cycles. Four multiaxial strain based theories have been developed to correlate biaxial fatigue experimdntal results. These theories showed good correlatins except for maximum shear strain theory. In uniaxial tests, crack behavior was observed that crack initiated in the maximum shear strain direction and propagated in the direction perpendicular to principal stross. But, in biaxial tests, both crack initiation and growth occured on the maximum shear strain direction only.

Topology optimization of nonlinear single layer domes by a new metaheuristic

  • Gholizadeh, Saeed;Barati, Hamed
    • Steel and Composite Structures
    • /
    • v.16 no.6
    • /
    • pp.681-701
    • /
    • 2014
  • The main aim of this study is to propose an efficient meta-heuristic algorithm for topology optimization of geometrically nonlinear single layer domes by serially integration of computational advantages of firefly algorithm (FA) and particle swarm optimization (PSO). During the optimization process, the optimum number of rings, the optimum height of crown and tubular section of the member groups are determined considering geometric nonlinear behaviour of the domes. In the proposed algorithm, termed as FA-PSO, in the first stage an optimization process is accomplished using FA to explore the design space then, in the second stage, a local search is performed using PSO around the best solution found by FA. The optimum designs obtained by the proposed algorithm are compared with those reported in the literature and it is demonstrated that the FA-PSO converges to better solutions spending less computational cost emphasizing on the efficiency of the proposed algorithm.

A Study on the Characteristics of Arne Jacobsen's Furniture Design (아느 야콥슨(Arne Jacobsen)의 가구 디자인 특성에 관한 연구)

  • 김진우;한민정
    • Journal of the Korea Furniture Society
    • /
    • v.12 no.1
    • /
    • pp.69-79
    • /
    • 2001
  • The purpose of this study is to examine the characteristics of Arne Jacobsen's chair design. He was one of the few creators who inscribed his name in both the history of architecture and furniture design. His works reflected a form of "Regional Modernism" in which traditional techniques collide with functionalist beliefs. This grafting of ideas generated a person aesthetics which he used to establish a suitability of scale, detail an program for each design. In the material aspect, he had enjoyed using the plasticity of the plywood, polyurethane, tubular steel and in the formative aspect, organic form is combined with minimalization of material and simplicity. To sum up what is unique about Arne Jacobsen's chair design, it is that it is distinguished by a clear understanding and expression of beauty from nature, a complete understanding of the material used and the melding of traditional and functional techniques to generate organic form.anic form.

  • PDF

HIGH TEMPERATURE DEFORMATION BEHAVIOR OF AUSTENITIC STAINLESS STEELS FOR EXHAUST MANIFOLD (Exhaust Manifold 용 오스테나이트계 스테인리스 강의 고온 변형특성)

  • Lee, K.D.;Ha, T.K.;Jeong, H.T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.314-317
    • /
    • 2007
  • Domestic automobile industries have been focusing their effort on development of exhaust manifolds using high temperature stainless steel. Exhaust manifolds fabricated with stainless steels can be categorized into tubular and cast ones. The former is usually manufactured by forming and welding process and the latter by vacuum casting process. In the present study, high temperature mechanical properties of 5 austenitic stainless steels, one was sand cast and the others vacuum cast, were investigated by performing a series of high temperature tensile tests and high temperature low cycle fatigue tests.

  • PDF

Fatigue Fracture Behaviour of Hollow Section Joints

  • Lichun Bian;Lim, Jae-Kyoo
    • Proceedings of the KWS Conference
    • /
    • 2001.10a
    • /
    • pp.281-284
    • /
    • 2001
  • Fatigue behaviour of eight different hollow section T-joints was investigated experimentally using scaled steel models. The joints had circular brace members and rectangular chords (CRHS). Hot spot stresses and the stress concentration factors (SCFs) were determined experimentally. Fatigue testing was carried out under constant amplitude loading in air. The experimental SCF values for CRHS joints were found to be between those of circular-to-circular (CCHS) and rectangular-to-rectangular (RRHS) hollow section joints. The fatigue strength referred to experimental hot spot stress was in reasonably good agreement with current fatigue design codes for tubular joints.

  • PDF

Development of Hydroformed Automotive Parts with Heat-treatable Aluminum Extrudates (열처리형 Al 압출재를 이용한 하이드로포밍 부품개발)

  • Lee, M.Y.;Kang, C.Y.;Ryu, S.J.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.17 no.3
    • /
    • pp.165-172
    • /
    • 2004
  • Compared with the hydroforming technology for steel, the hydroforming technology for aluminum has not been actively investigated. Recently, the hydroforming of high strength aluminum tubes has attracted great interest because of its good strength to weight ratio. In this study, front side member (FSM) is fabricated with the hydroforming of aluminum tube and the mechanical properties and dimensional accuracy of the hydroformed FSM is investigated. For hydroforming process, extruded aluminum tubes with ribs to improve the structural rigidity are used. To ensure the mechanical properties, the aluminum tubes are T6 heat-treated before hydroforming.