• Title/Summary/Keyword: tubular steel

Search Result 453, Processing Time 0.028 seconds

Simplified design formula of slender concrete filled steel tubular beam-columns

  • Chung, Jinan;Matsui, Chiaki;Tsuda, Keigo
    • Structural Engineering and Mechanics
    • /
    • v.12 no.1
    • /
    • pp.71-84
    • /
    • 2001
  • The objective of this paper is to develop a simplified method that could predict the strength of concrete filled steel tube (CFT) columns applicable to high strength material under combined axial compression and flexure. The simplified method for determining the strength of CFT columns is based on the interaction curve of the section approached by a polygonal connection of the points. These points are determined by using symmetrical properties of the CFT section. For each point, a simple equation is proposed to determine the strength of the slender columns under compression and flexure. The simple equation was adjusted with results of elasto-plastic analysis results. Validation of the simplified method is undertaken by comparison with data from the test conducted at Kyushu University. These results confirm the fact that the simplified method could accurately and reliably predict the strength of CFT columns under combined axial compression and flexure.

Nonlinear Analysis of Concrete Filled Steel Tubular Column under Concentric Axial Load (중심축력하의 콘크리트 충전 각형강관 기둥의 비선형 해석)

  • 김선웅;홍성걸
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.613-616
    • /
    • 2003
  • Steel-concrete composite columns are used extensively in modern buildings. Extensive research on composite columns in which structural steel are in concrete have been carried out. In-filled composite columns, however have received limited attention compared to encased columns. In this paper, interrelationship of parameters is examined into analyzing and comparing with data through ABAQUS program and experiment on concrete filled tubular column under axial load and propriety of model is checked out by FEM analysis. The main variations of this paper are width-thickness ratio of the section(B/t =33.3, 38.9, 44.4), concrete strength($f_{ck}$=240, 360kgf/$\textrm{cm}^2$), and width-length ratio($L_o$/B=8.0, 10.0, 12.0, 15.0, 20.0). The ultimate value obtained through analysis is compared with test value and calculated by design code of other countries and previous studies.

  • PDF

Experimental Study for Confined Concrete of Double Skinned Composite Tubular Columns by Uniaxial Compression Test (일축 압축 실험을 통한 DSCT 부재의 구속 콘크리트에 대한 실험적 연구)

  • Lee, Jeong-Hwa;Han, Sang-Yun;Won, Deok-Hee;Kang, Young-Jong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.4 no.3
    • /
    • pp.13-21
    • /
    • 2013
  • In this study, uniaxial compression tests were performed to investigates the stress-strain relations of Double Skinned Composite Tubular Columns reinforced with steel tube. The confined concrete has been known as the strength of concrete increases significantly. Specimens reinforced with outer and inner steel tube were tested by uniaxial compression test. To investigate the influence of concrete strength increase by confining conditions in steel tubes, 8 specimens with different thickness of tube, hollowness ratio and concrete strength were tested and compared with other researcher's concrete material model.

Degradation of buckling capacity of slender concrete-filled double skin steel tubular columns due to interface compliance

  • Cas, Bojan;Schnabl, Simon
    • Structural Engineering and Mechanics
    • /
    • v.82 no.5
    • /
    • pp.643-650
    • /
    • 2022
  • In this paper a novel mathematical model and its analytical solution of global buckling behaviour of slender elastic concrete-filled double-skin tubular (CFDST) columns with finite compliance between the steel tubes and a sandwiched concrete core is derived for the first time. The model is capable of investigating the influence of various basic parameters on critical buckling loads of CFDST columns. It is shown that the elastic buckling load of circular and slender CFDST columns is independent on longitudinal contact stiffness, but, on the other hand, it can be considerably dependent on circumferential contact stiffness. The increasing of the circumferential contact stiffness increases the critical buckling load. Furthermore, it is shown that analytical results can agree well with the experimental and numerical results if the calibrated values of circumferential contact stiffness are used in the calculations. Moreover, it is shown that the contact between the steel tubes and a sandwiched concrete core of tested large-scale CFDST columns used in the comparison is relatively weak. Finally, the proposed analytical results can be used as a benchmark solution.

Tests and numerical behavior of circular concrete-filled double skin steel tubular stub columns under eccentric loads

  • Manigandan R.;Manoj Kumar
    • Structural Engineering and Mechanics
    • /
    • v.88 no.3
    • /
    • pp.287-299
    • /
    • 2023
  • This article describes experimental and numerical analyses of eccentrically loaded over the axially loaded circular concrete filled double-skinned steel tubular (CFDST) short columns. Tests on circular CFDST short columns under eccentric and concentric loading were conducted to assess their responses to the frequent intensity of 5-30 mm at the interval of each 5 mm eccentric loading conditions with constant cross-sectional proportions and width-to-thickness ratios of the outside and internal tubes. The non-linear finite-element analysis of circular CFDST short columns of eccentrically loaded over the axially loaded was performed using the ABAQUS to predict the structural behavior and compare the concentric loading capacity over the various eccentric loading conditions. The comparison outcomes show that the axial compressive strength of the circular CDFST short columns was 2.38-32.86%, lesser than the concentrically loaded short column with the inner circular section. Also, the influence of computer simulation employed is more efficient in forecasting the experimentally examined performance of circular CFDST stub columns.

Evolution of concrete encased - CFST column: A comprehensive review on structural behavior and performance characteristics

  • Namitha Raveendran;Vasugi K
    • Steel and Composite Structures
    • /
    • v.51 no.6
    • /
    • pp.619-645
    • /
    • 2024
  • In the construction industry, composite structures have revolutionized traditional design principles, opening innovative possibilities. The Concrete Encased - Concrete Filled Steel Tubular (CE-CFST) column stands out as a distinctive composite structure, offering structural stability and resilience for various engineering applications. Comprising Reinforced Concrete (RC) and Concrete Filled Steel Tubular (CFST) components, CE-CFST columns are valued for their inherent properties, including ductility and rigidity, CE-CFST is commonly used in the construction of bridges, high-rise buildings, and more. This article aims to provide a concise overview of the evolutionary development of CE-CFST columns and their performance in structural applications. Through a comprehensive review, the study delves into the behaviour of CE-CFST columns under different scenarios. It examines the influences of key parameters such as size, infills, cross section, failure causes, and design codes on the performance of CE-CFST columns, highlighting their enhanced functionality and future potential. Moreover, the review meticulously examines previous applications of CE-CFST columns, offering insights into their practical implementation.

An Experimental Study on the Strength of the Frame consisting of Concrete Filled Steel Tubular Column-H Beam under Alternately Repeated Horizontal Loading (반복하중을 받는 콘크리트충전 강관기둥-H형강보 골조의 강도에 관한 실험적 연구 -접합부 보강형식과 콘크리트충전에 따른 효과-)

  • Lee, Seong Do;Kim, Pil Jung
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.4 s.37
    • /
    • pp.641-655
    • /
    • 1998
  • It researched several jointing-methods of frame consisting of a concrete-filled steel tubular column and H-shaped beam. These beam-to-column connections is parameters to following: columns of square shape pipe infilled with or without concrete, joints assembled two types of diaphragm, outside-type and through-type. And it is testing that cyclically lateral loadings used hydraulic ram. In testing. we'll be on purposed to estimate the hysteretic behavior, strength and stiffness, energy absorption capacity, deformation capacity and failure configuration of each specimen. It is concluded that the frame specimens with outside-type are more stable and exhibit more energy absorption capacity compared with the through-type, in column of filled with concrete.

  • PDF

Behavior of Concrete-Filled Square Steel Tubular Column-H Beam Connections with Exterior Diaphragm (외부다이아프램으로 보강한 콘크리트충전 각형강관 기둥-H형강보 접합부의 거동)

  • Yoo, Yeong Chan;Lee, Seung Joon;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.2 s.31
    • /
    • pp.205-220
    • /
    • 1997
  • The objective of this study is to investigate the structural behavior of concrete-filled steel tubular column-H beam connections with exterior stiffeners. As a preliminary test, simple tensile test on the column to H-beam flange connections stiffened were conducted The paramaters of tensile test are the thickness(T=9, 12, 15m) and the width(W=50, 75, 100, 150mm) of exterior stiffeners. The simple tensile test were conducted to 7 kinds of specimens. Estimating the load, displacement, and strain from each kind, results of simple tensile test were compared with results of second test. On the basis of simple tensile test, test on the column to H-km connections stiffened with the sames under monotonic and cyclic load were conducted. Specimens of 5 for the second experiment were made. In analysis, comparing each strengthes and stiffnesses we estimated deformation capacity. Comparing and estimating each yielding strength ratios and maxium-strength ratios on the basis of yield line theory, new strength formula of beam-to-column connections was suggested.

  • PDF

The Prediction of Yield Load in Circular Tubular T-type Cross Sections on the Truss Structures (강관트러스의 T형 격점부의 항복하중 예측에 관한 연구)

  • Park, Il Min
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.1
    • /
    • pp.9-18
    • /
    • 2001
  • many steel tubular truss as roof structures are used of the large span structures Steel tubular sectioned truss has the structural merits in compared with other sections such as H, L-shape sections However it occurs local buckling at the joint of branch in truss and it makes the deterioration of loading capacity Loading capacity and deformation characteristics of truss joints are very complicate so it is very hard to predict exact solution of them Therefore this thesis dealt with T-type joints of steel circular hollow sectioned truss. A series of experimental scheme were planned and mainly experimental parameters were : ratio of diameter of branch-diameter of main chord(d/D). diameter-thickness(T/D) of main chord. In this paper predicted yield load capacity using by closed ring analysis method additionally compared with that of suggested by closed ring analysis method additionally compared with that of suggested by other countries.

  • PDF

Behavior of Concrete-Filled Square Steel Tubular Column-H Beam Connections with Plates (강판보강 콘크리트충전 각형강관 기둥-H형강보 접합부의 거동)

  • Yoo, Yeong Chan;Shin, Kyung Jae;Oh, Young Suk;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.2 s.35
    • /
    • pp.161-175
    • /
    • 1998
  • The objective of this study is to investigate the structural behavior of Concrete-Filled Steel Tubular Column-H Beam connections with plate stiffeners. The first, we made experiment on the Column to H-beam flange connections stiffened with simple tensile loading. The paramaters of tensile experiment are the area of each plates. The simple tensile experiment is conducted to 5 kinds of specimens. Eestimating the load, displacement, and strain from each kind, we compared them with results of second experiment. The second, we made experiment on the Column to H-beam connections stiffened with the sames under monotonic and cyclic load. we made specimens of 5 for the second experiment. In analysis, comparing each strengthes and stiffnesses we estimated deformation capacity. Comparing and estimating each yielding strength ratios and maxium-strength ratios on the basis of Yield line theory, we suggested new Strength Formula of Beam-to-Column Connections.

  • PDF