• Title/Summary/Keyword: tubular reabsorption

Search Result 42, Processing Time 0.021 seconds

Pharmacokinetic Study of Pyrazinamide Related to the Mechanism of the Renal Excretion (Pyrazinamide의 신배설기전에 관한 약동학적 연구)

  • Choi, Eung-Sang;Shin, Sang-Goo;Lee, Sun-Hee;Choi, Cheol-Hee;Kim, Yong-Sik;Lim, Jung-Kyoo;Park, Chan-Woong
    • The Korean Journal of Pharmacology
    • /
    • v.23 no.1
    • /
    • pp.1-7
    • /
    • 1987
  • The renal handling and tissue distribution of pyrazinamide were studied after administration of single dose intravenous injection for 15 min or constant infusion in New Zealand White rabbits. Peak pyrazinamide serum concentration ranged from 57.3 to $105.0{\mu}g/ml$ ($mean{\pm}SD;83.0{\pm}17.8$). The mean half-life of the a phase was $0.143{\pm}0.047$ hr while the ${\beta}$ phase ranged from 1.66 to 3.25 hr($mean{\pm}SD;2.38{\pm}0.57$). The mean steady-state volume of distribution in non-compartmental model was $0.935{\pm}0.362\;L/kg$ Excretion ratio of pyrazinamide was dramatically reduced from 1.02 to 0.30 when unbound serum pyrazinamide concentration was increased from 6.04 to $60.9\;{\mu}g/ml$. The urine flow dependency of renal clearance of pyrazinamide was demonstrated in steady-state serum concentration. The tissue/serum concentration ratio of pyrazinamide was highest in kidney and lowest in skeletal muscle among the tissues examined. The results suggested that a large fraction of pyrazinamide filtered by glomerulus and secreted by renal tubule was reabsorbed and this tubular reabsorption of pyrazinamide might be greatly influenced by urine flow.

  • PDF

Effects of Intracerebroventricular TFMPP on Rabbit Renal Function (뇌실내 TFMPP가 가토신장기능에 미치는 효과)

  • Lim, Young-Chai;Choi, Johng-Bom;Kim, Kyung-Keun;Kook, Young-Johng
    • The Korean Journal of Pharmacology
    • /
    • v.28 no.2
    • /
    • pp.137-146
    • /
    • 1992
  • The central tryptaminergic system has been shown to play an important role in the regulation of renal function: $5-HT_1$ receptor mediate diuresis and natriuresis, whereas both $5-HT_2$ and $5-HT_3$ mediate antidiuresis and antinatriuresis. Recently, $5-HT_1$ receptors are further subdivided into many subtypes, and central $5-HT_{1A}$ subtype was shown to mediate diuretic and natriuretic effects. The present study was undertaken to delineate the role of $5-HT_{1B}$ subtype. Trifluoromethylphenylpiperazine (TFMPP), a selective $5-HT_{1B}$ agonist in doses ranging from 8 to $750\;{\mu}g/kg$ icv elicited diuresis, natriuresis and kaliuresis in dose-dependent fashion, with the fractional excretion of filtered Na reaching 5.44% with $250\;{\mu}g/kg$ icv. The natriuresis outlasted the transient increases in renal hemodynamics, suggesting humoral mediation in the decreased tubular Na reabsorption. Plasma concentration of atrial natriuretic peptide increased along with the natriuresis. Systemic blood pressure transiently increased. When given intravenously, no diuresis and natriuresis was elicited, indicating the central mechanism. The icv TFMPP effects were not significantly affected by icv methysergide, a nonselective $5-HT_1$ blocker. Both ketanserin and MDL 72222, selective $5-HT_2$ and $5-HT_3$ antagonists, resp., did not abolish the TFMPP effects. Nor did NAN-190, $5-HT_{1A}$ blocker, affect the TFMPP effects. These observations suggest that central $5-HT_{1B}$ receptors may play a role in the central regulation of renal function by exerting diuretic and natriuretic influences, mainly through natriuretic factors.

  • PDF