• Title/Summary/Keyword: tubular positive plate

Search Result 4, Processing Time 0.019 seconds

The influence of the soaking in the manufacturing of positive tubular plates on the performance of lead-acid batteries (튜브식 양극판의 침적공정이 전지 성능에 미치는 영향)

  • Yoon, Youn-Saup;Kim, Byung-Kuan;An, Sang-Yong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.25 no.2
    • /
    • pp.211-218
    • /
    • 2008
  • The performance of positive plates depends on the structure of the lead dioxide active mass. The positive active materials (PAM) consists of a skeleton, built up of agglomerates and macropores. Agglomerates, in their turn, comprise particles and micropores. This paper described a study conducted to determine the effects of different soaking times between the acid fill and formation stages of the tubular plate production. For the positive plates a lead oxide were filled into tubular bag with a red lead. After filling the positive plates were soaked in $H_2SO_4$ solution. X-ray diffraction(XRD), scanning electron microscopy(SEM) and electrical testing had been used to study the compositional and morphological aspects of the positive active material(PAM) just prior and after formation. Results indicate that PAM compositions were effected by the soaking time and acid density of $H_2SO_4$ solution. It can be seen that as the soaking time duration increases, $\alpha$-PbO, $Pb_3O_4$, and Pb were all gradually sulphating. Composition of 3BS reached a maximum at around 3 h duration and $H_2SO_4$ of sp. gr. 1.10 on soaking. This results would suggest that the most beneficial conditions for soaking were the $H_2SO_4$ of sp. gr. 1.10 and 2 to 6 h of soaking.

Influence of Filling Density in the Positive Active-material on the Cycle-life Performance of the Tubular Type Gelled Valve Regulated Lead Acid Batteries (튜브식 겔형 납축전지에 있어서 활물질 밀도에 따른 싸이클 수명 특성)

  • Yoon, Youn-Saup;Kim, Byung-Kwan;Lee, Soo;Kim, Kyu-Tea
    • Applied Chemistry for Engineering
    • /
    • v.10 no.3
    • /
    • pp.415-418
    • /
    • 1999
  • The characteristics of VRLA (valve regulated Iead-acid) battery with the tubular positive plate and gel type electrolyte were examined as a function of active material filling density. The filling density of positive plate was 3.2 g/mL, 3.4 g/mL, and 3.6 g/mL, respectively. These VRLA batteries were cycled with 100% DOD (depth of discharge) at the $C_5/5$ rate, followed by IU-type recharge with $I_{max}=0.2C_{10}/10$ and a final voltage V=2.40 V/cell. The test was performed in a thermostatic room at $25{\pm}1^{\circ}C$. The result indicated that the initial capacity was independent of active material filling density, i.e., the highest initial capacity was 3.4 g/mL of filling density and the lowest was 3.6 g/mL. On aspect of the cycle-life performance of the VRLA battery, the filling density of 3.6 g/mL was similar to that of 3.4 g/mL in the positive plate, and both were higher than that of 3.2 g/mL. Water-loss and degradation of the VRLA battery were decreased according to an increase of the filling density in the positive plate. The optimum filling density of the active material was 3.4~3.6 g/mL.

  • PDF

Numerical studies on axially loaded doubler plate reinforced elliptical hollow section T-joints

  • Sari, Busra;Ozyurt, Emre
    • Steel and Composite Structures
    • /
    • v.43 no.1
    • /
    • pp.107-116
    • /
    • 2022
  • This paper presents results of numerical studies completed on unreinforced and doubler plate reinforced Elliptical Hollow Section (EHS) T-joints subjected to axial compressive loading on the brace member. Non-linear finite element (FE) models were developed using the finite element code, ABAQUS. Available test data in literature was used to validate the FE models. Subsequently, a parametric study was carried out to investigate the effects of various geometrical parameters of main members and reinforcement plates on the ultimate capacity of reinforced EHS T-joints. The parametric study found that the reinforcing plate significantly increases the ultimate capacity of EHS T-joints up to twice the capacity of the corresponding unreinforced joint. The thickness and length of the reinforcing plate have a positive effect on the ultimate capacity of Type 1 joints. This study, however, found that the capacity of Type 1 orientation is not dependent on the brace-to-chord diameter ratio. As for type 2 orientations, the thickness and length of the reinforcement have a minimal effect on the ultimate capacity. A new design method is introduced to predict the capacity of the reinforced EHS T-joints Type 1 and 2 based on the multiple linear regression analyses.

Correlations of Phase Velocities of Guided Ultrasonic Waves with Cortical Thickness in Bovine Tibia (소의 경골에서 유도초음파의 위상속도와 피질골 두께 사이의 상관관계)

  • Lee, Kang-Il
    • The Journal of the Acoustical Society of Korea
    • /
    • v.30 no.1
    • /
    • pp.56-62
    • /
    • 2011
  • In the present study, the phase velocities of guided ultrasonic waves such as the first arriving signal (FAS) and the slow guided wave (SGW) propagating along the long axis on the 12 tubular cortical bone samples in vitro were measured and their correlations with the cortical thickness were investigated. The phase velocities of the FAS and the SGW were measured by using the axial transmission method in air with a pair of unfocused ultrasonic transducers with a diameter of 12.7 mm and a center frequency of 200 kHz. The phase velocity of the FAS measured at 200 kHz exhibited a very high negative correlation with the cortical thickness and that of the SGW arriving after the FAS showed a high positive correlation with the cortical thickness. The simple and multiple linear regression models with the phase velocities of the FAS and the SGW as independent variables and the cortical thickness as a dependent variable revealed that the coefficient of determination of the multiple linear regression model was higher than those of the simple linear regression models. The phase velocities of the FAS and the SGW measured at 200 kHz on the 12 tubular cortical bone samples were, respectively, consistent with those of the S0 and the A0 Lamb modes calculated at 200 kHz on the cortical bone plate.