• 제목/요약/키워드: tubular member

검색결과 78건 처리시간 0.018초

Analysis of behaviour for hollow/solid concrete-filled CHS steel beams

  • Kvedaras, Audronis Kazimieras;Sauciuvenas, Gintas;Komka, Arunas;Jarmolajeva, Ela
    • Steel and Composite Structures
    • /
    • 제19권2호
    • /
    • pp.293-308
    • /
    • 2015
  • Interaction between the external thin-walled steel tube and the internal concrete core significantly increases the bending resistance of composite beams and beam-columns in comparison with the steel or concrete members. There is presented a developed method for design of hollow and solid concrete-filled steel tubular beams based on test data, which gives better agreement with test results than EC4 because its limitation to take an increase in strength of concrete caused by confinement contradicts the recommendation of 6.7.2(4) that full composite action up to failure may be assumed between steel and concrete components of the member. Good agreement between the results of carried out experimental, numerical and theoretical investigations allows recommending the proposed method to use in design practice.

Numerical studies on axially loaded doubler plate reinforced elliptical hollow section T-joints

  • Sari, Busra;Ozyurt, Emre
    • Steel and Composite Structures
    • /
    • 제43권1호
    • /
    • pp.107-116
    • /
    • 2022
  • This paper presents results of numerical studies completed on unreinforced and doubler plate reinforced Elliptical Hollow Section (EHS) T-joints subjected to axial compressive loading on the brace member. Non-linear finite element (FE) models were developed using the finite element code, ABAQUS. Available test data in literature was used to validate the FE models. Subsequently, a parametric study was carried out to investigate the effects of various geometrical parameters of main members and reinforcement plates on the ultimate capacity of reinforced EHS T-joints. The parametric study found that the reinforcing plate significantly increases the ultimate capacity of EHS T-joints up to twice the capacity of the corresponding unreinforced joint. The thickness and length of the reinforcing plate have a positive effect on the ultimate capacity of Type 1 joints. This study, however, found that the capacity of Type 1 orientation is not dependent on the brace-to-chord diameter ratio. As for type 2 orientations, the thickness and length of the reinforcement have a minimal effect on the ultimate capacity. A new design method is introduced to predict the capacity of the reinforced EHS T-joints Type 1 and 2 based on the multiple linear regression analyses.

Axial compressed UHPC plate-concrete filled steel tubular composite short columns, Part I: Bearing capacity

  • Jiangang Wei;Zhitao Xie;Wei Zhang;Yan Yang;Xia Luo;Baochun Chen
    • Steel and Composite Structures
    • /
    • 제47권3호
    • /
    • pp.405-421
    • /
    • 2023
  • An experimental study on six axially-loaded composite short columns with different thicknesses of steel tube and that of the concrete plate was carried out. Compared to the mechanical behavior of component specimens under axially compressed, the failure modes, compression deformation, and strain process were obtained. The two main parameters that have a significant enhancement to cross-sectional strength were also analyzed. The failure of an axially loaded UHPC-CFST short column is due to the crushing of the UHPC plate, while the CFST member does reach its maximum resistance. A reduction coefficient K'c, related to the confinement coefficient, is introduced to account for the contribution of CFST members to the ultimate load-carrying capacity of the UHPC-CFST composite short columns. Based on the regression analysis of the relationship between the confinement index ξ and the value of fcc/fc, a unified formula for estimating the axial compressive strength of CFST short columns was proposed, combined with the experimental results in this research, and an equation for reliably predicting the strength of UHPC-CFST composite short columns under axial compression were also proposed.

Push-out tests and bond strength of rectangular CFST columns

  • Qu, Xiushu;Chen, Zhihua;Nethercot, David A.;Gardner, Leroy;Theofanous, Marios
    • Steel and Composite Structures
    • /
    • 제19권1호
    • /
    • pp.21-41
    • /
    • 2015
  • Push-out tests have been conducted on 18 rectangular concrete-filled steel tubular (CFST) columns with the aim of studying the bond behaviour between the steel tube and the concrete infill. The obtained load-slip response and the distribution of the interface bond stress along the member length and around the cross-section for various load levels, as derived from measured axial strain gradients in the steel tube, are reported. Concrete compressive strength, interface length, cross-sectional dimensions and different interface conditions were varied to assess their effect on the ultimate bond stress. The test results indicate that lubricating the steel-concrete interface always had a significant adverse effect on the interface bond strength. Among the other variables considered, concrete compressive strength and cross-section size were found to have a pronounced effect on the bond strength of non-lubricated specimens for the range of cross-section geometries considered, which is not reflected in the European structural design code for composite structures, EN 1994-1-1 (2004). Finally, based on nonlinear regression of the test data generated in the present study, supplemented by additional data obtained from the literature, an empirical equation has been proposed for predicting the average ultimate bond strength for SHS and RHS filled with normal strength concrete.

컴퓨터 시뮬레이션(CAE)을 이용한 자동차용 AA6061 리어 서브-프레임 사이드멤버의 하이드로-포밍 공정 개발 (Hydro-forming Process Development of Automotive AA6061 Rear Sub-frame Side Member by Computer Aided Engineering (CAE))

  • 김기주;김재현;최병익
    • 한국자동차공학회논문집
    • /
    • 제18권5호
    • /
    • pp.45-49
    • /
    • 2010
  • The automotive industry has shown a growing interest in tube hydroforming during the past years. The advantages of hydroforming (less thinning, a more efficient manufacturing process, etc.) can, for instance, be combined with the high strength of extra high strength steels, which are usually less formable, to produce structural automotive components which exhibit lower weight and improved service performance. Design and production of tubular components require knowledge about tube material and forming behavior during hydroforming and how the hydroforming operation itself should be controlled. These issues are studied analytically in the present paper. In this study, the whole process of rear sub-frame parts development by tube hydroforming using AA6061 material is presented. At the part design stage, it requires feasibility study and process design aided by CAE (Computer Aided Engineering) to confirm hydroformability in details. Effects of parameters such as internal pressure, axial feeding and geometry shape in automotive rear sub-frame by hydroforming process were carefully investigated. Overall possibility of hydroformable rear sub-frame parts could be examined by cross sectional analyses. Moreover, it is essential to ensure the formability of tube material on every forming step such as pre-bending and hydroforming. In addition, all the components of prototyping tool are designed and interference with press is examined from the point of geometry and thinning.

Reliability analysis for lateral stability of tongwamen bridge

  • Pan, Sheng-Shan;Lei, Shi;Tan, Yong-Gang;Zhang, Zhe
    • Steel and Composite Structures
    • /
    • 제11권5호
    • /
    • pp.423-434
    • /
    • 2011
  • Tongwamen Bridge is a critical link between Dongmen Island and the land in Shipu town, Zhejiang province, China. It is a 238 m span, half-through, concrete-filled steel tubular (CFST) X-type arch bridge. The width of the deck is only 10 m, yielding a width-to-span ratio of 1/23.8. The plane truss type section rib was adopted, which made of two CFST chords and web member system. The lateral stability is the key issue to this bridge. However, the existing researches on Tongwamen Bridge's lateral stability are all the deterministic structural analysis. In this paper, a new strategy for positioning sampling points of the response surface method (RSM), based on the composite method combining RSM with geometric method for structural reliability analysis, is employed to obtain the reliability index of lateral stability. In addition the correlated parameters were discussed in detail to find the major factors. According to the analysis results, increasing the stiff of lateral braces between the arch ribs and setting the proper inward-incline degree of the arch rib can enhance obviously the reliability of lateral stability. Moreover, the deck action of non-orienting force is less than the two factors above. The calculated results indicate that the arch ribs are safe enough to keep excellent stability, and it provides the foundation that the plane truss rib would be a competitive solution for a long-span, narrow, CFST arch bridge.

프리스트레스트 콘크리트 관형 구조물의 폭발량에 따른 내부폭발저항성능에 관한 실험적 평가 (Experimental Evaluation of Internal Blast Resistance of Prestressed Concrete Tubular Structure according to Explosive Charge Weight)

  • 최지훈;최승재;양달훈;김장호
    • 대한토목학회논문집
    • /
    • 제39권3호
    • /
    • pp.369-380
    • /
    • 2019
  • PSC 구조물에 폭발과 같은 극한하중이 짧은 시간 동안 발생하게 되면 급작스러운 파괴와 그로 인한 수많은 인명 및 재산피해를 발생시킨다. 하지만 원전격납구조물, 가스탱크와 같은 PSC 구조물의 경우 방호 및 방재개념이 포함된 구조설계가 적용되지 않은 실정이며, 특히, 구조물 내부에서 발생하는 폭발압력하중은 피해규모가 외부폭발에 비해 훨씬 크기 때문에 내부폭발하중에 대한 검증은 반드시 필요하다. 따라서, 본 연구에서는 원전격납구조물의 내부폭발에 대한 저항성능을 검토하기 위해 이방향 프리스트레스트 콘크리트 축소모형을 제작하였다. 내부폭발 실험은 22.68, 27.22, 31.75 kg (50, 60, 70 lbs)의 ANFO 폭약을 이용하여 시편으로부터 1,000 mm의 거리에서 폭발시켰으며, 압력하중, 처짐, 변형률, 균열형상, 긴장력 변화 등의 데이터를 분석하였다. 본 연구결과를 이용하여 원전격납구조물의 내부폭발하중 발생 시 손상도 범위 예측이 가능할 것으로 판단된다.

복합십자형 CFT 기둥-보 접합부의 내력식에 관한 연구 (A Study on the Equations for Load Carrying Capacities of Concrete Filled tubular Square Column-to-Beam Connections with Combined Cross Diaphragm and Sleeves)

  • 최성모;정도섭;김대중;김진호
    • 한국강구조학회 논문집
    • /
    • 제17권4호통권77호
    • /
    • pp.419-429
    • /
    • 2005
  • 본 연구의 목적은 기존의 복합십자형 다이아프램을 사용한 CFT 기둥-보 인장측 접합부에 관한 연구에 이어서 접합부 각 요소의 구조적 특성을 명료하게 하는데 있다. 복합십자형 다이아프램은 기존 접합부의 하중전달 경로 및 다이아프램의 갑작스런 기하학적인 형상 변화에 대한 디테일을 개선함으로서, 보 플랜지 및 다이아프램에 응력을 고르게 분포시키고 접합부의 응력집중이 완화된 접합방식이다. 복합십자형 다이아프램을 접합부에서 중요한 요소 중 하나인 슬리브에서의 응력전달에 관하여 연구를 수행하였다. 슬리브의 두께 및 길이를 변수로 하여 해석한 결과, 슬리브의 길이 및 두께는 접합부의 내력에 큰 영향을 주지 않고 다이아프램으로부터의 하중을 콘크리트로 전달시키는 매개체의 역할을 하였다. 또한 적정 슬리브의 길이 및 두께를 각각 직경의 1배, 슬리브 직경/두께비를 20으로 제안한다. 기존의 내력식을 검토하여 메커니즘을 수정한 후 적용가능한 접합부의 극한내력식 및 항복내력식을 제안하였다.