• Title/Summary/Keyword: tubular joints

Search Result 119, Processing Time 0.026 seconds

Characteristics of CFRP strengthened tubular joints subjected to different monotonic loadings

  • Prashob, P.S.;Shashikala, A.P.;Somasundaran, T.P.
    • Steel and Composite Structures
    • /
    • v.32 no.3
    • /
    • pp.361-372
    • /
    • 2019
  • Tubular joints are used in the construction of offshore structures and other land-based structures because of its ease of fabrication. These joints are subjected to different environmental loadings in their lifetime. At the time of fabrication or modification of an existing offshore platform, tubular joints are usually strengthened to withstand the environmental loads. Currently, various strengthening techniques such as ring stiffeners, gusset plates are employed to strengthen new and existing tubular joints. Due to some limitations with the present practices, some new techniques need to be addressed. Many researchers used Fibre Reinforced Polymer (FRP) to strengthen tubular joints. Some of the studies were focused on axial compression of Glass Fibre Reinforced Polymer (GFRP) strengthened tubular joints and found that it was an efficient technique. Earlier, the authors had performed studies on Carbon Fibre Reinforced Polymer (CFRP) strengthened tubular joint subjected to axial compression. The study steered to the conclusion that FRP composites is an alternative strengthening technique for tubular joints. In this work, the study was focused on axial compression of Y-joint and in plane and out of plane bending of T-joints. Experimental investigations were performed on these joints, fabricated from ASTM A106 Gr. B steel. Two sets of joints were fabricated for testing, one is a reference joint and the other is a joint strengthened with CFRP. After performing the set of experiments, test results were then compared with the numerical solution in ANSYS Parametric Design Language (APDL). It was observed that the joints strengthened with CFRP were having improved strength, lesser surface displacement and ovalization when compared to the reference joint.

Effects of geometrical parameters on the degree of bending in two-planar tubular DYT-joints of offshore jacket structures

  • Hamid Ahmadi;Mahdi Ghorbani
    • Ocean Systems Engineering
    • /
    • v.13 no.2
    • /
    • pp.97-121
    • /
    • 2023
  • Through-the-thickness stress distribution in a tubular member has a profound effect on the fatigue behavior of tubular joints commonly found in steel offshore structures. This stress distribution can be characterized by the degree of bending (DoB). Although multi-planar joints are an intrinsic feature of offshore tubular structures and the multi-planarity usually has a considerable effect on the DoB values at the brace-to-chord intersection, few investigations have been reported on the DoB in multi-planar joints due to the complexity of the problem and high cost involved. In the present research, data extracted from the stress analysis of 243 finite element (FE) models, verified based on available parametric equations, was used to study the effects of geometrical parameters on the DoB values in two-planar tubular DYT-joints. Parametric FE study was followed by a set of nonlinear regression analyses to develop six new DoB parametric equations for the fatigue analysis and design of axially loaded two-planar DYT-joints.

Axial Strength Evaluation for Tubular T-Joints with Internal Ring Stiffener (환보강재를 가진 T형 관이음부의 축방향 강도 평가)

  • 조현만;류연선;김정태
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.269-276
    • /
    • 2001
  • Tubular structures are widely used for offshore platforms and truss type structures. In this paper, nonlinear finite element analysis is used to assess the static strength of stiffened tubular T-joints subjected to compressive brace loading. This joints was modelled with and without internal ring stiffener According to variation of ring geometries, the effect of ring stiffener for T-joints are investigated. Internal ring stiffener is found to be efficient improving ultimate strength of tubular joints. Relations of ring thickness and axial strength are observed considering geometric parameters of ring stiffeners.

  • PDF

Strength Evaluation Formulae for Ring-Stiffened Tubular X-Joints (내부 환보강 X형 관이음부의 강도산정식)

  • 조현만;류연선
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.61-68
    • /
    • 2002
  • Tubular members have been applied in a wide range of frame structures including offshore structures. For the efficient load flow in tubular-member structures, the joints of tubular members are usually reinforced using internal ring stiffener for the steel tubular joint having a large diameter. The objective of this paper is to numerically assess the behavior of X-joints with an internal ring stiffener, and to evaluate the reinforcement effect of a ring stiffener, and to establish the strength formulae. Nonlinear finite element analysis is used to compute the static strength of axially loaded tubular joints. From the numerical results, internal ring stiffener is found to be efficient in improving static strength of tubular X-joints. Maximum strength ratios are calculated as 1.5~3.5, and the effective dimensions of ring stiffener are found. Regression analyses are performed considering practical size of ring stiffener and strength estimation formulae are proposed.

  • PDF

Static Strength of Internally Ring-Stiffened Tubular T-Joints (내부 환보강 T형 관이음부의 정적강도)

  • CHO HYUN-MAN;RYU YEON-SUN
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.6 s.61
    • /
    • pp.70-78
    • /
    • 2004
  • In order to increase the load carrying capacity of tubular structures, the joints of tubular members are usually reinforced with various reinforcement system. A stiffening method with internal ring stiffeners is effectively used for the steel tubular joint with a large diameter. In this study, the behavior of internally ring-stiffened tubular T-joints subjected to axial loading is assessed. For the parametric study, nonlinear finite element analyses are used to compute the static strength on non-stiffened and ring-stiffened T-joints. Based on the numerical results, an internal ring stiffener is found to be efficient in improving the static strength. The influence of geometric parameters has been determined, and the reinforcement effect are evaluated. Based on the FE results, regression analises are performed considering the practical size of ring stiffener. Finally strength estimation formulas for ring-stiffened tubular T-joints are proposed.

Stress concentration factors for multi-planar tubular KK-joints of jacket substructures in offshore wind turbines

  • Hamid Ahmadi;Adel Alizadeh Atalo
    • Ocean Systems Engineering
    • /
    • v.14 no.3
    • /
    • pp.237-259
    • /
    • 2024
  • Although the investigation on the effect of loaded out-of-plane braces on the values of the stress concentration factor (SCF) in offshore tubular joints has been the objective of numerous research works, a number of quite important cases still exist that have not been studied thoroughly due to the diversity of joint types and loading conditions. One of these cases is the multi-planar tubular KK-joint subjected to axial loading. Tubular KK-joints are among the most common joint types in jacket substructure of offshore wind turbines (OWTs). In the present research, data extracted from the stress analysis of 243 finite element (FE) models, verified against available experimental data, was used to study the effects of geometrical parameters on the chord-side SCFs in multi-planar tubular KK-joints subjected to axial loading. Parametric FE study was followed by a set of nonlinear regression analyses to develop three new SCF parametric equations for the fatigue analysis and design of axially loaded multi-planar KK-joints.

Local joint flexibility equations for Y-T and K-type tubular joints

  • Asgarian, Behrouz;Mokarram, Vahid;Alanjari, Pejman
    • Ocean Systems Engineering
    • /
    • v.4 no.2
    • /
    • pp.151-167
    • /
    • 2014
  • It is common that analyses of offshore platforms being carried out with the assumption of rigid tubular joints. However, many researches have concluded that it is necessary that local joint flexibility (LJF) of tubular joints should be taken into account. Meanwhile, advanced analysis of old offshore platforms considering local joint flexibility leads to more accurate results. This paper presents an extensive finite-element (FE) based study on the flexibility of uni-planner multi-brace tubular Y-T and K-joints commonly found in offshore platforms. A wide range of geometric parameters of Y-T and K-joints in offshore practice is covered to generate reliable parametric equations for flexibility matrices. The formulas are obtained by non-linear regression analyses on the database. The proposed equations are verified against existing analytical and experimental formulations. The equations can be used reliably in global analyses of offshore structures to account for the LJF effects on overall behavior of the structure.

A new experimental technique on the tubular joints of spatial grid structures

  • Chen, Zhi-Hua;Sun, Guo-Jun;Luo, Zhi-Shan
    • Structural Engineering and Mechanics
    • /
    • v.40 no.6
    • /
    • pp.801-811
    • /
    • 2011
  • A new experimental technique was developed on the plate-inserted welded tubular joints of spatial grid structures. In the experimental technique, a microcomputer controlling instrument of moire intervention (MCIMI) was adopted. A test was designed on the plate-inserted welded tubular joints of spatial grid structures to show the effectiveness of the MCIMI technique. Both traditional electrical measuring technique and MCIMI technique were employed in the test. The test results showed that the MCIMI technique was feasible in the case of the complicated tests on steel structures. The MCIMI technique not only implemented the limitation of traditional electrical measuring technique, but also improved the accuracy of the test. According to the test results, we further examined the plate-inserted welded tubular joints in the cable-stayed spatial grids of the Binhai International Convention & Exhibition in Tianjin, China. The analysis showed the joints are safely designed with adequate conservatism. The research provided a new application of MCIMI in the field of large-scale structure engineering.

SCFs in offshore two-planar tubular TT-joints reinforced with internal ring stiffeners

  • Ahmadi, Hamid;Imani, Hossein
    • Ocean Systems Engineering
    • /
    • v.12 no.1
    • /
    • pp.1-22
    • /
    • 2022
  • The majority of tubular joints commonly found in offshore jacket structures are multi-planar. Investigating the effect of loaded out-of-plane braces on the values of the stress concentration factor (SCF) in offshore tubular joints has been the objective of numerous research works. However, due to the diversity of joint types and loading conditions, a number of quite important cases still exist that have not been studied thoroughly. Among them are internally ring-stiffened two-planar TT-joints subjected to axial loading. In the present research, data extracted from the stress analysis of 243 finite element (FE) models, verified against available numerical and experimental data, was used to study the effects of geometrical parameters on the chord-side SCFs in two-planar tubular TT-joints reinforced with internal ring stiffeners subjected to two types of axial loading. Parametric FE study was followed by a set of nonlinear regression analyses to develop six new SCF parametric equations for the fatigue analysis and design of axially-loaded two-planar TT-joints reinforced with internal ring stiffeners.

A Study on the Stress Concentration Factor and Fatigue Strength for T-Tubular Joints by FEM (유한요소법에 의한 튜블라 이음부의 응력집중계수 및 피로강도 해석)

  • 엄동석;강성원;하우일
    • Journal of Ocean Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.141-150
    • /
    • 1994
  • In designing, the strength of tubular joint has been an important problem for integrity of steel structures in which many tubular members are used. This paper presents the results of FEM analysis on stress concentration and fatigue crack initiation life for two types of tubular joints. One is circular and rectangular T type joints which consist of circular brace and rectangular chord. Another is circular and circular T type joints which consist of circular brace and circular chord. FEM analyses were performed under the axial load and in-plane bending moment. The fatigue crack initiation life can be estimated by using $\varepsilon$-N curve and by applying the Palmgren-Miner linear damage rule. According to the results, the stress concentration factor(SCF) of circular and rectangular joints is higher than that of circular and circular joints. The fatigue crack initiation lives of circular-circular joints and circular-rectangular joints were calculated.

  • PDF