• Title/Summary/Keyword: tube-support

Search Result 285, Processing Time 0.026 seconds

Effects of Gap between Tube and Support Plate on the Steam Generator Tube Wear (증기발생기 세관과 지지대 간극이 세관 마모에 미치는 영향)

  • Park, Chi-Yong;Lee, Yong-Son;Boo, Myung-Hwan;Kim, Tae-Ryong;Kim, Tae-Soon
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.302-307
    • /
    • 2004
  • The major flow-induced vibration mechanisms such as fluid-elastic and turbulence excitation can cause the various types of wear of the steam generator tubes in unclear power plant. It is generally accepted that the tube wear due to vibration is affected by the presence of gap clearance between tube and support plate. Connors showed that the tube wear depth could be estimated by using the relationship between wear volume and sliding distance for contact time. Au-Yang predicted the wear depth by using the nonlinear characteristics of normal work rate to contact time. In this study the effect of gap size on the steam generator tubes wear is analyzed by deriving the wear depth versus normal work rate relationship from these previous results.

  • PDF

Methodology for Wear Prediction Considering the Gap between Tube and Support/Anti-vibration-bar in the Steam Generator (증기발생기 세관과 지지대 간극을 고려한 마모량 예측 방법론)

  • Lee, Yong-Son;Park, Chi-Yong;Kim, Tae-Soon;Boo, Myung-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.84-89
    • /
    • 2004
  • When the tube contacted to support, anti-vibration bar of the steam generator in nuclear power plant, the contact area is worn out by their relative displacement and contact force. Connors and Au-Yang found the relation between tube worn displacement and volume, or normal work rate at given gap size. The present analysis is obtained the relation between tube worn displacement and normal work rate at various gap size modifying Au-Yang's result. The results are compared with Connors and Yettisir and Pettigrew's results. The comparison shows that Yettisir and Pettigrew result is fairly good agreement with Connors and present results with gap clearance, 0.015in.

  • PDF

Restrained Bending Effect by the Support Plate on the Steam Generator Tube with Circumferential Cracks (원주방향 균열 존재 증기발생기 전열관에 미치는 지지판의 굽힘제한 영향)

  • Kim, Hyun-Su;Jin, Tae-Eun;Kim, Hong-Deok;Chung, Han-Sub;Chang, Yoon-Suk;Kim, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.2 s.257
    • /
    • pp.277-284
    • /
    • 2007
  • The steam generator in a nuclear power plant is a large heat exchanger that uses heat from a reactor to generate steam to drive the turbine generator. Rupture of a steam generator tube can result in release of fission products to environment outside. Therefore, an accurate integrity assessment of the steam generator tubes with cracks is of great importance for maintaining the safety of a nuclear power plant. The steam generator tubes are supported at regular intervals by support plates and rotations of the tubes are restrained. Although it has been reported that the limit load for a circumferential crack is significantly affected by boundary condition of the tube, existing limit load solutions do not consider the restraining effect of support plate correctly. In addition, there are no limit load solutions for circumferential cracks in U-bend region with the effect of the support plate. This paper provides detailed limit load solutions for circumferential cracks in top of tube sheet and the U-bend regions of the steam generator tube with the actual boundary conditions to simulate the restraining effect of the support plate. Such solutions are developed based on three dimensional finite element analyses. The resulting limit load solutions are given in a polynomial form, and thus can be simply used in practical integrity assessment of the steam generator tubes.

A Study on Radiator Support Member Manufacturing Technology by Hydroforming (Hydroforming을 이용한 Radiator Support Member의 제조기술에 관한 연구)

  • Sohn S. M.;Lee M. Y.;Lee S. Y.;Jo Y. J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.05a
    • /
    • pp.44-48
    • /
    • 2001
  • Tube hydroforming technology has increased dramatically, mainly by automotive industry in europe and the americas. It is required tube formability, optimized with regard to tribological factors and specially designed die and presses. In this process has many important parameters as expansion ratio of a tube, axial feeding, internal pressure and preforming low pressure. The following paper discusses to combine forming factors and expectation of manufacture problem by hydroforming of automotive radiator support member.

  • PDF

EFFECTS OF SUPPORT STRUCTURE CHANGES ON FLOW-INDUCED VIBRATION CHARACTERISTICS OF STEAM GENERATOR TUBES

  • Ryu, Ki-Wahn;Park, Chi-Yong;Rhee, Hui-Nam
    • Nuclear Engineering and Technology
    • /
    • v.42 no.1
    • /
    • pp.97-108
    • /
    • 2010
  • Fluid-elastic instability and turbulence-induced vibration of steam generator U-tubes of a nuclear power plant are studied numerically to investigate the effect of design changes of support structures in the upper region of the tubes. Two steam generator models, Model A and Model B, are considered in this study. The main design features of both models are identical except for the conditions of vertical and horizontal support bars. The location and number of vertical and horizontal support bars at the middle of the U-bend region in Model A differs from that of Model B. The stability ratio and the amplitude of turbulence-induced vibration are calculated by a computer program based on the ASME code. The mode shape with a large modal displacement at the upper region of the U-tube is the key parameter related to the fretting wear between the tube and its support structures, such as vertical, horizontal, and diagonal support bars. Therefore, the location and the number of vertical and horizontal support bars have a great influence on the fretting wear mechanism. The variation in the stability ratios for each vibrational mode is compared with respect to Model A and Model B. Even though both models satisfy the design criteria, Model A shows substantial improvements over Model B, particularly in terms of having greater amplitude margins in the turbulence-excited vibration (especially at the inner region of the tube bundle) and better stability ratios for the fluid-elastic instability.

Tool Lifecycle Optimization using ν-Asymmetric Support Vector Regression (ν-ASVR을 이용한 공구라이프사이클 최적화)

  • Lee, Dongju
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.43 no.4
    • /
    • pp.208-216
    • /
    • 2020
  • With the spread of smart manufacturing, one of the key topics of the 4th industrial revolution, manufacturing systems are moving beyond automation to smartization using artificial intelligence. In particular, in the existing automatic machining, a number of machining defects and non-processing occur due to tool damage or severe wear, resulting in a decrease in productivity and an increase in quality defect rates. Therefore, it is important to measure and predict tool life. In this paper, ν-ASVR (ν-Asymmetric Support Vector Regression), which considers the asymmetry of ⲉ-tube and the asymmetry of penalties for data out of ⲉ-tube, was proposed and applied to the tool wear prediction problem. In the case of tool wear, if the predicted value of the tool wear amount is smaller than the actual value (under-estimation), product failure may occur due to tool damage or wear. Therefore, it can be said that ν-ASVR is suitable because it is necessary to overestimate. It is shown that even when adjusting the asymmetry of ⲉ-tube and the asymmetry of penalties for data out of ⲉ-tube, the ratio of the number of data belonging to ⲉ-tube can be adjusted with ν. Experiments are performed to compare the accuracy of various kernel functions such as linear, polynomial. RBF (radialbasis function), sigmoid, The best result isthe use of the RBF kernel in all cases

A Study on the Wind Tunnel Facility Performance Improvement of ADD Ludwieg Tube (국방과학연구소 Ludwieg Tube 풍동설비 성능개량 연구)

  • Sangjun Ma
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.4
    • /
    • pp.118-125
    • /
    • 2023
  • The wind tunnel test is one of the essential processes in the development of guided missile systems, and various wind tunnel facilities exist depending on the test requirements, various conditions, and their purposes. The Ludwieg tube is very useful in the development of guided missile systems, and we have necessitated the upgrade of the Ludwieg tube in ADD to acquire various test requirements, such as high angle of attack, repeatability, and stability. In this paper, upgrading the nozzle, vacuum tank, and model support is suggested to improve the Ludwieg tube performance, and we demonstrate a result of the solution through pressure measurement.

A Brief Review on the Design Factors of Steam Generator U-Tube Assembly for CANDU Type Nuclear Power Plant

  • Park, Nam-Il;Park, June-Soo
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05d
    • /
    • pp.321-326
    • /
    • 1996
  • During the plant operation, steam generator U-tube assembly will potentially be subject to adverse environmental conditions which can cause damages to them. This report addresses the major design factors of CANDU type steam generator which are intended to minimize the potential tube damages. Such factors include U-tube material, high circulation ratio, tube-to-tubesheet joint, tube support design. Also a few suggestions are presented for the design and performance improvement of CANDU type steam generators.

  • PDF

FIV Characteristics of U-Tubes Due to Relocation of the Tube Supprot Plates (튜브 지지판 재배치에 따른 유체유발진동 특성 해석)

  • Kim, Hyung-Jin;Ryu, Ki-Wahn;Park, Chi-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.312-317
    • /
    • 2005
  • Fluid-elastic instability and turbulence excitation for an under developing steam generator are investigated numerically. The stability ratio and the amplitude of turbulence excitation are obtained by using the PIAT (Program for Integrity Assessment of Steam Generator Tube) code from the information on the thermal-hydraulic data of the steam generator. The aspect ratio, the ratio between the height of U-tube from the upper most tube support plate (h) and the width of two vertical portion of U-tube (w), is defined for geometric parameter study. Several aspect ratios with relocation of tube support plates are adopted to study the effects on the mode shapes and characteristics of flow-induced vibration. When the aspect ratio exceeds value of 1, most of the mode shapes at low frequency are generated at the top of U-tube. It makes very high value of the stability ratio and the amplitude of turbulent excitation as well. We can consider that the local mode shape at the upper side of U-tube will develop the wear phenomena between the tube and the anti-vibration bars such as vertical, horizontal, and diagonal strips. It turns out that the aspect ratio reveals very important parameter for the design stage of the steam generator. The appropriate value of the aspect ratio should be specified and applied.

  • PDF

A study on deformation characteristics of tube hydro-piercing process (하이드로 피어싱에서의 변형 특성 연구)

  • 최성기;안익태;문영훈
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.237-240
    • /
    • 2003
  • Deformation surrounding the hole in the tube during the hydro-piercing process has been investigated in this study. The tube is expanded and internally pressurized between upper and lower dies, and a piercing punch is driven forcefully through a cross passage in the die and through the wall of the tube. The pressurized fluid within the tube provides support to the wall of the tube during a piercing step to form a hole in the tube having less deformation surrounding the hole in the tube. The deformation area may be fully retracted to a substantially flat form or partially retracted to a countersunk form. In this study, a mathematical model that can predict deformation surrounding the hole has been proposed and experimentally verified by actual hydro-piercing test.

  • PDF