• Title/Summary/Keyword: tube theory

Search Result 256, Processing Time 0.023 seconds

Rule Generation Adust Convergence for Deflection Yoke Using Rough Set Theory (러프 집합 이론을 이용한 편향요크의 컴커젼수 조정을 위한 규칙생성)

  • 방원철;변증남;변명현
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.218-224
    • /
    • 1998
  • 본 논문에서는 컬러 모니터용 전자관(CDT; Color Display Tube)의 편향 요크(DY; Deflection Yoke)의 제조 공정상 오차가 발생시키는 컨버전스의 오차를 보정하기 위하여 붙이는 페라이트 박판(Ferrite Sheet)의 위치를 결정하는 규칙을 생성하는 박판을 붙여야 하는지 판단한다. 이를 러프 집합 이론을 이용하여 컨버전스 값을 조건부 속성으로, 페라이트 박판의 위치를 판단부 속성으로 하여 판단 테이블을 만들고 이때 발생하는 몇 가지 문제를 해결하여 최소화된 규칙을 찾아내는 방안을 제안한다.

  • PDF

Operating Characteristics of a Bubble Pump for Diffusion-Absorption Refrigerator (확산형 흡수식 냉동기용 기포펌프의 운전특성에 관한 연구)

  • 이현경;김선창;이재헌
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.9
    • /
    • pp.878-887
    • /
    • 2001
  • Experimental investigation has been carried out to examine the operating characteristics of a bubble pump for diffusion absorption refrigerator. The effects of heat input and delivery height on generation rate of refrigerant vapor and circulation rate of solution have been investigated. as a result heat input and delivery height increase, circulation rate of solution increases. And the smaller the tube diameter, the larger the circulation rate of solution. Pumping ratio increases to a critical point and then decrease with the increase of heat input, and it increases with the increase in delivery height. In this paper, Marcus's analytical theory was also examined. It was found that the Marcus\`s analytical theory of a bubble pump was not appropriate for a bubble pump using ammonia aqueous solution as a working fluid.

  • PDF

A constitutive model for confined concrete in composite structures

  • Shi, Qing X.;Rong, Chong;Zhang, Ting
    • Steel and Composite Structures
    • /
    • v.24 no.6
    • /
    • pp.689-695
    • /
    • 2017
  • The constitutive relation is an important factor in analysis of confined concrete in composite structures. In order to propose a constitutive model for nonlinear analysis of confined concrete, lateral restraint mechanism of confined concrete is firstly analyze to study the generalities. As the foundation of the constitutive model, peak stress and peak strain is the first step in research. According to the generalities and the Twin Shear Unified Strength Theory, a novel unified equation for peak stress and peak strain are established. It is well coincident with experimental results. Based on the general constitutive relations and the unified equation for peak stress and peak strain, we propose a unified and convenient constitutive model for confined concrete with fewer material parameters. Two examples involved with steel tube confined concrete and hoop-confined concrete are considered. The proposed constitutive model coincides well with the experimental results. This constitutive model can also be extended for nonlinear analysis to other types of confined concrete.

Semi-Empirical Analysis of the Mass Transfer Characteristics of the Slug Flow in Vertical Mesoscale Tubes (작은 수직관을 흐르는 슬러그 유동의 물질전달 특성에 대한 반경험적 해석)

  • Kim, Dong-Seon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.8
    • /
    • pp.366-374
    • /
    • 2014
  • Experimental mass transfer data, which were obtained for the $CO_2$-water slug flows in vertical tubes with 2, 5, and 8mm diameters, were analyzed in comparison with the penetration theory. It was found that a penetration model with molecular diffusion coefficient cannot predict the experimental data accurately. An effective diffusion coefficient, which considers enhancement effect of interfacial waves, was suggested to improve prediction. Another empirical factor was also suggested to consider the effect of non-uniform interface velocity. A modified penetration model was found to be capable of predicting the experimental data reasonably well.

Body action impacts the stability of nanomedicine tools in the drug delivery

  • Peng Zou;Wei Zhao;Jinpeng Dong;Yinyin Cao
    • Advances in nano research
    • /
    • v.14 no.3
    • /
    • pp.247-259
    • /
    • 2023
  • Muscle strength and hypertrophy are equivalent when low-intensity resistance exercise is paired with blood flow restriction. This paper deals with the impact of physical exercise in the form of body activities on drug delivery using nanodevices. The body's actions impact the blood flow since the nano drug delivery devices are released into the bloodstream, and physical exercise and all the activities that change the blood flow influence the stability of these nanodevices. The nanodevice for the drug delivery purpose is modeled via nonuniform tube structures based on the high-order beam theory along with the nonlocal strain gradient theory. The nanodevice is made by a central nanomotor as well as two nanoblade in the form of truncated conical nanotubes carrying the nanomedicine. The mathematical simulation of rotating nanodevices is numerically solved, and the effect of various parameters on the stability of nanodevices has been studied in detail after the validation study.

Effect of cross-section geometry on the stability performance of functionally graded cylindrical imperfect composite structures used in stadium construction

  • Ying Yang;Yike Mao
    • Geomechanics and Engineering
    • /
    • v.35 no.2
    • /
    • pp.181-194
    • /
    • 2023
  • The primary objective of this study is to examine the influence of geometry on the stability characteristics of cylindrical microstructures. This investigation entails a stability analysis of a bi-directional functionally graded (BD-FG) cylindrical imperfect concrete beam, focusing on the impact of geometry. Both the first-order shear deformation beam theory and the modified coupled stress theory are employed to explore the buckling and dynamic behaviors of the structure. The cylinder-shaped imperfect beam is constructed using a porosity-dependent functionally graded (FG) concrete material, wherein diverse porosity voids and material distributions are incorporated along the radial axis of the beam. The radius functions are considered in both uniform and nonuniform variations, reflecting their alterations along the length of the beam. The combination of these characteristics leads to the creation of BD-FG configurations. In order to enable the assessment of stability using energy principles, a numerical technique is utilized to formulate the equations for partial derivatives (PDEs).

Sensitivity Analysis for Unit Module Development of Hybrid tube Structural System (복합 튜브 구조시스템의 단위 모듈 개발에 대한 민감도 해석)

  • Lee, Yeon-Jong;Park, Sung-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.1
    • /
    • pp.167-175
    • /
    • 2018
  • This research deals, The characteristics of mechanics and behavior of the tube structural systems, It has been investigated and considered conventional theory and case models, It has shown the suitability, The best location, And optimal shape of the unit module system, Considered variables materials of stiffness increase and decrease in hybrid tube structural systems this study carried out adapting analysis of statistical concepts. In a concrete way, This study exams the effect of reducing horizontal displacement and the shear lag phenomenon, Also, The purpose of this study is to utilize the basic data on the design and study of future high-rise hybrid structural system using this research. As a result, The framed- tube structural system does not effectively cope with horizontal behavior of high-rise buildings, The results of using varying material tested resistance factors and lateral loads in hybrid tube structural system, When each material is compared Bracing material is identified as a key factor in lateral behavior. In a ratio of material quantity framed-tube structural system, The level of sensitivity affecting the horizontal displacement is greater then the beam's column, In case of braced tube structural system, Braced appeared to be most sensitive in comparison of material quantity ratio in columns and beams.

Non-linear free and forced vibration analysis of sandwich nano-beam with FG-CNTRC face-sheets based on nonlocal strain gradient theory

  • Arani, Ali Ghorbanpour;Pourjamshidian, Mahmoud;Arefi, Mohammad
    • Smart Structures and Systems
    • /
    • v.22 no.1
    • /
    • pp.105-120
    • /
    • 2018
  • In this paper, the nonlinear free and forced vibration responses of sandwich nano-beams with three various functionally graded (FG) patterns of reinforced carbon nanotubes (CNTs) face-sheets are investigated. The sandwich nano-beam is resting on nonlinear Visco-elastic foundation and is subjected to thermal and electrical loads. The nonlinear governing equations of motion are derived for an Euler-Bernoulli beam based on Hamilton principle and von Karman nonlinear relation. To analyze nonlinear vibration, Galerkin's decomposition technique is employed to convert the governing partial differential equation (PDE) to a nonlinear ordinary differential equation (ODE). Furthermore, the Multiple Times Scale (MTS) method is employed to find approximate solution for the nonlinear time, frequency and forced responses of the sandwich nano-beam. Comparison between results of this paper and previous published paper shows that our numerical results are in good agreement with literature. In addition, the nonlinear frequency, force response and nonlinear damping time response is carefully studied. The influences of important parameters such as nonlocal parameter, volume fraction of the CNTs, different patterns of CNTs, length scale parameter, Visco-Pasternak foundation parameter, applied voltage, longitudinal magnetic field and temperature change are investigated on the various responses. One can conclude that frequency of FG-AV pattern is greater than other used patterns.

Endochronic simulation for viscoplastic collapse of long, thick-walled tubes subjected to external pressure and axial tension

  • Lee, Kuo-Long;Chang, Kao-Hua
    • Structural Engineering and Mechanics
    • /
    • v.18 no.5
    • /
    • pp.627-644
    • /
    • 2004
  • In this study, the endochronic theory was used to investigate the collapse of thick-walled tubes subjected to external pressure and axial tension. The experimental and theoretical findings of Madhavan et al. (1993) for thick-walled tubes of 304 stainless steel subjected to external pressure and axial tension were compared with the endochronic simulation. Collapse envelopes for various diameter-to-thickness tubes under two different pressure-tension loadings were involved. It has been shown that the experimental results were aptly described by the endochronic approach demonstrated from comparison with the theoretical prediction employed by Madhavan et al. (1993). Furthermore, by using the rate-sensitivity function of the intrinsic time measure proposed by Pan and Chern (1997) in the endochronic theory, our theoretical analysis was extended to investigate the viscoplastic collapse of thick-walled tubes subjected to external pressure and axial tension. It was found that the pressure-tension collapse envelopes are strongly influenced by the strain-rate during axial tension. Due to the hardening of the metal tube of 304 stainless steel under a faster strain-rate during uniaxial tension, the size of the tension-collapse envelope increases.

Torsion strength of single-box multi-cell concrete box girder subjected to combined action of shear and torsion

  • Wang, Qian;Qiu, Wenliang;Zhang, Zhe
    • Structural Engineering and Mechanics
    • /
    • v.55 no.5
    • /
    • pp.953-964
    • /
    • 2015
  • A model has been proposed that can predict the ultimate torsional strength of single-box multi-cell reinforced concrete box girder under combined loading of bending, shear and torsion. Compared with the single-cell box girder, this model takes the influence of inner webs on the distribution of shear flow into account. According to the softening truss theory and thin walled tube theory, a failure criterion is presented and a ultimate torsional strength calculating procedure is established for single-box multi-cell reinforced concrete box girder under combined actions, which considers the effect of tensile stress among the concrete cracks, Mohr stress compatibility and the softened constitutive law of concrete. In this paper the computer program is also compiled to speed up the calculation. The model has been validated by comparing the predicted and experimental members loaded under torsion combined with different ratios of bending and shear. The theoretical torsional strength was in good agreement with the experimental results.