• Title/Summary/Keyword: tube bending

Search Result 306, Processing Time 0.024 seconds

Springback Characteristics of Bent Tubes for Hydroforming Applications (하이드로포밍 응용을 위한 벤딩튜브의 스프링백 특성)

  • Lee, H.K.;Park, S.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.06a
    • /
    • pp.45-48
    • /
    • 2006
  • Recently, the use of tubular hydroforming technology has seen increased usage and increased consideration for wide range of tubular automotive applications. In manufacturing hydroformed parts, bending and pre-forming operations are often required prior to the hydroforming process. Higher bending quality of bent tubes is crucial for the successful hydroforming operation because most of plastic strains and wall thinning at the extrados of bend area occur in the bending operation. Springback is also observed due to elastic recovery of tube material after bending. Proper correction of springback is required not only to well place the bent tube into a hydroforming die cavity but also to avoid pinching when the upper die is brought down to closing position. Therefore, prediction of springback at early development stage is one of the key factors to produce high quality hydroformed parts. In this study, a variety of bending experiments has been carried out to investigate springback amount under change in bending angle and material boosting. Throughout the experimental approach, springback characteristics of bent tubes are quantified according to the change in various bending parameters, and a mathematical model to predict correction amount of springback to a given bend angle is found.

  • PDF

Development of Bending Machine with High Efficiency and Precision Forming (고효율 배관용 정밀성형 벤딩머시인 개발)

  • Mun, Sang-Don
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.1
    • /
    • pp.7-14
    • /
    • 2011
  • Soft copper tube is one of the popular materials which are used for shipbuilding, automobiles, and freezing and HVAC equipment. However, these materials have problems that they cause occasionally outside wrinkle, spring back, wall thinning phenomena. In this study, to avoid these phenomena, was manufactured a mild materials devoted bending machine, which selected a bending method where the mandrel presses the pipe along with the sliding guide rail during bending process. During the course of confirming this performance, it was found that as the diameter of copper tube used for materials became smaller, the spring back phenomenon increased. And as the bending angle became larger, it became larger. In addition, we could manufacture mold products which scarcely generated wrinkle when bending copper tubes.

An experimental study on creep deformation of thin-walled tubes under pure bending

  • Hsu, Chien-Min;Fan, Chun-Huei
    • Structural Engineering and Mechanics
    • /
    • v.9 no.4
    • /
    • pp.339-347
    • /
    • 2000
  • The creep deformation of pure bending (hold constant moment for a period of time) tests were conducted in this paper. Thin-walled tubes of 304 stainless steel were used in this investigation. The curvature-ovalization measurement apparatus, designed by Pan et al. (1998), was used for conducting the present experiments. It has been found that as soon as the creep deformation is started, the magnitudes of the tube curvature and ovalization of tube cross-section quickly increase. The magnitudes of the creep curvature and ovalization of tube cross-section increase fast with a higher hold moment than that with a lower one. Owing to the continuously increasing curvature during the creep deformation, the tube specimen buckles eventually.

Bending Performances and Collapse Mechanisms of Light-weight Aluminum-GERP Hybrid Square Tube Beams (경량화 알루미늄-GFRP 혼성 사각관 보의 굽힘성능 및 붕괴 메커니즘)

  • Lee, Sung-Hyuk;Kim, Hyung-Jin;Chang, Young-Wook;Choi, Nak-Sam
    • Composites Research
    • /
    • v.20 no.3
    • /
    • pp.8-16
    • /
    • 2007
  • Bending collapse of light-weight square tubes used for vehicle structure components is a dominant failure mode in oblique collision and rollover of vehicles. In this paper bending performances of aluminum-GFRP hybrid tube beams were evaluated in relation with bending deformation behavior and energy absorption characteristics. Aluminum/GFRP hybrid tube beams fabricated by inserting adhesive film between prepreg and metal layer were used in the bending test. Failure mechanisms of hybrid tubes under a bending load were experimentally investigated to analyze the bending performance as a function of ply orientation and composite layer thickness. Ultimate bending moments and energy absorption capacity of hybrid tube beams were obtained from the measured load-displacement corves. It was found that aluminum/GFRP hybrid tubes could be converted to rather stable collapse mode showing excellent energy absorption capacity in comparison to the pure aluminum tube beams. In particular, the hybrid tube beam with $[0^{\circ}/90^{\circ}]s$ composite layer showed a large improvement by about 78% in energy absorption capacity and by 29% in specific energy absorption.

Additional Stresses in Flange Frame of Tube Structures under Lateral Loading (수평하중을 받는 튜브 구조물의 플랜지에 작용하는 부가 응력)

  • 이강건;이리형
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.317-322
    • /
    • 2001
  • A mathematical modelling technique is proposed for estimating the additional bending stresses of tube(s)-in-tube structures due to tube-tube interaction, which has a significant effects on the shear-lag phenomenon. The proposed method simulates the framed-tube structures with multiple internal tubes as equivalent multiple tubes, each composed of four equivalent orthotropic plate panels. Hence, the tube(s)-in-tube structure can be analysed by using an analogy approach where each tube is individually modelled by a continuous beam that can account for the flexural and shear deformations as well as the shear-lag effects. The numerical analysis is applicable for the structural analysis of framed-tube structures with single and multiple internal tubes, as well as those without internal tubes. The shear-lag phenomenon of such structures is studied with additiona] bending stresses and shear-lag reversal points.

  • PDF

Crush Characteristics of Thin-walled Rectangular Tube (박판사각튜브의 압괴 특성)

  • 이종선
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.261-266
    • /
    • 1998
  • In this study, crush characteristics of thin-walled rectangular tube is investigated. The stiffness of the element is obtained from analytical moment-rotation relationship and approximated load-deflection relationship of thin-walled rectangular tube. A computer program is developed for the large deformation analysis of frame. An incremental displacement method is used in the program and at each incremental stage, the stiffness matrix of the total structure is checked with the state each element for bending and compression.

  • PDF

Development of a Practical Two-Microphone Impedance Tube Method for Sound Transmission Loss Measurement of Sound Isolation Materials

  • Ro, Sing-Nam;Hwang, Yoon;Lee, Dong-Hoon
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.11 no.3
    • /
    • pp.105-113
    • /
    • 2003
  • This study developed a practical two-microphone impedance tube method to measure the sound transmission loss of sound isolation materials without the use of an expensive reverberation room or an acoustic intensity probe. In order to evaluate the validation and applicability of the two-microphone impedance tube method, sound transmission losses for several sound isolation materials with different surface density and bending stiffness were measured, and the measured values were compared with the results from the reverberation room method and the theory. From the experimental results, it was found that the accuracy of sound transmission loss obtained by the impedance tube method depends upon the diameter size of the impedance tube (i.e., tested sample size). For sound isolation materials having relatively large bending stiffness such as acryl, wood, and aluminum plates, it was found that the impedance tube method proposed by this study was not valid to measure the sound transmission loss. On the other hand, for sound isolation materials having relatively small bending stiffness such as rubber, polyvinyl, and asphalt sheets, the comparisons of transmission loss between the results from the impedance tube method and the theory showed a good agreement within the range of the frequencies satisfying the normal incidence mass law. Therefore, the two-microphone impedance tube method proposed by this study can be an effective measurement method to evaluate the sound transmission loss for soft sound isolation sheets having relatively small bending stiffness.

A Study on the Bendability of Stainless Steel Tubes (스테인리스 강관의 굽힘 특성 연구)

  • Lee, G.Y.;Lee, H.J.;Yi, H.K.;Kim, Y.K.;Moon, Y.H.
    • Transactions of Materials Processing
    • /
    • v.18 no.4
    • /
    • pp.336-341
    • /
    • 2009
  • Hydroformed parts have higher dimensional accuracy, structural strength, and dimensional repeatability. Particularly in the automotive industry, manufacturing of parts with complex shapes from tubular materials sometimes requires one or more pre-forming operations such as bending before the hydroforming process. The pre-bending process is an important process for the successful hydroforming in the case where the perimeter of the blank is nearly the same as that of final product. The bendability of a tube depends on the parameters such as the bending radius, welding methods, mechanical properties and hardness. Through the stainless steel tubes bent by rotary draw bending machine, this study shows the following : (1) The influence on spring back ratio variation with stress level in the welded bent tube. (2) The Cross-section ovality variation with weld seam position and bending radius. (3) The relation between elongation and thickness reduction of tension zone with weld seam position and bending radius. (4) Workability evaluation of bent stainless steel tubes through the hardness of materials and hardness increment. The results of this study may help to understanding of characteristics on bendability of stainless steel tubes.

A Study on the Design of Three-Dimensional Bending Machine (3차원 Bending Machine 설계에 관한 연구)

  • Lee, Choon-Man;Lim, Sang-Heon;Park, Dong-Keun
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1852-1857
    • /
    • 2003
  • This study is concerned about the development of three-dimensional bending machine for heat exchanger. Recently, three-dimensional bending is required for various heat exchanger. The purpose of this study is design of three-dimensional bending machine by analysis of bending process and structural analysis simulation. The analysis is carried out by FEM simulation using DEFORM and CATIA V5 software. The copper-tube is modeled by shell elements and the machine is modeled by placing proper shell and solid finite elements and fictitious mass properties to represent the real one. The final results of analysis are applied to the design of three-dimensional bending machine and the machine is successfully developed.

  • PDF

An Experimental Study on Cross-sectional Deformation in 2D Tube Bending: Stretch, Bending Sequence and Bending Angle (2차원 튜브벤딩의 단면 변형에 관한 실험적 연구: 인장, 벤딩 시퀀스 및 벤딩 각도 중심으로)

  • T. Ha
    • Transactions of Materials Processing
    • /
    • v.32 no.4
    • /
    • pp.221-227
    • /
    • 2023
  • While tube bending is a conventional forming technique, it is still used to make curved products for load-bearing members or aesthetically pleasing parts in various manufacturing industries such as automotive, aerospace, and others. Whole or local deformation of the final product such as springback, distortion, or local buckling are of interest in metal forming or precision manufacturing. In this paper, the factors affecting the cross-sectional deformation are explored. A 5-axis stretch bending machine was used for two-dimensional bending with extruded AA6082-T4 rectangular tubes. Three different bending sequences were employed: stretch before bending, stretch after bending, simultaneous bending and stretch. Furthermore, by considering both the stretch and bending angle, cross-sectional deformation was also analyzed. It was observed that employing stretch bending techniques can effectively reduce cross-sectional deformation and contribute to overall quality enhancement. Through this study, it was revealed that these factors have an impact on the cross-sectional deformation of the tubes.