• Title/Summary/Keyword: tryptophan metabolism

Search Result 39, Processing Time 0.03 seconds

Serotonin Synthesis and Metabolism in Dissociated Cultures of Fetal Rat Brainstem (흰쥐 태아 뇌간의 일차 세포배양에서 Serotonin의 합성 및 대사에 대한 연구)

  • Kim, Yung-Hi;Song, Dong-Keun;Wie, Myung-Bok;Song, Joon-Ho;Choi, Yeun-Sik
    • The Korean Journal of Pharmacology
    • /
    • v.26 no.1
    • /
    • pp.1-6
    • /
    • 1990
  • We established an in vitro system of central serotonergic neurons by culturing dissociated rat embryonic (El4) brainstem cells to 14 days in vitro and monitored the serotonergic neuronal growth by measuring 5-hydroxytryptamine (5-HT) and 5-hydroxyindoleacetic acid (5-HIAA) contents in the cells with hish performance liquid chromatography with electrochemical detection (HPLC-EC). We studied also tile effects of various drugs on the contents of 5-HT and 5-HIAA, confirming in vivo reports. The 5-HT content (13 ng/mg protein) and 5-HT turnover rate (17 pmol/mg protein/h) at 14 days in vitro were in good agreement with those reported in the adult rat brain. The 5-HT content was more easily depleted with p-chlorophenylalanine, a tryptophan hydroxylase inhibitor than with NSD 1015 (3-hydroxybenzylhydrazine), an aromatic L-amino acid decarboxylase (AADC) inhibitor. Incubation of the cultures with tryptophan or 5-hydroxytryptophan increased the rate of serotonin formation implying that neither tryptophan hydroxylase nor AADC is saturated with its amino acid substrate in this in vitro system . The 5-HT content was depleted by reserpine. The 5-HT and 5-HIAA contents were increased and decreased, respectively, by monoamine oxidase inhibitors. All the above results indicate that the biochemical properties of the central serotonergic neurons in this culture system reflect reliably those of central serotonergic neurons in vivo. We suggest that measuring 5-HT and 5-HIAA contents in the primary cultured dissociated brainstem-cells with HPLC-EC is useful in the study of pharmacology as well as toxicolgy of the central serotonergic neurons.

  • PDF

Effects of So-Ochim-tang-Gagam-bang on Oxidative Stress and Serotonin Metabolism in P815 Cells (소오침탕가감방(小烏沈湯加減方)의 산화스트레스와 serotonin 대사 과정에 미치는 영향)

  • Hwang, Ji-Yeon;Lee, Sang Ryong;Jung, In Chul
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.27 no.4
    • /
    • pp.422-430
    • /
    • 2013
  • This experiment was designed to investigate the effects of So-Oochim-tang-Gagam-bang (SOCT-G) on oxidative stress and serotonin metabolism in P815 Mast Cells The effects of SOCT-G on activity of 2,2-Diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging and Super Oxide Dismutase (SOD) in P815 mast cells were investigated. The effect of SOCT-G on content of serotonin in P815 mast cells was investigated. The effects of SOCT-G on expression of 5-hydroxytryptamine transporter (5-HTT), Tryptophan hydroxylase 1 (TPH-1) mRNA in P815 mast cells were investigated. The SOCT-G increased DPPH radical-scavenging activity in P815 mast cells. The SOCT-G increased SOD activity in P815 mast cells. The SOCT-G decreased the intracellular content of serotonin in P815 mast cells. The SOCT-G decreased 5-HTT and TPH-1 mRNA expression in P815 mast cells. This experiment shows that So-Ochm-Tang-Gagam-bang has a significant effect of oxidative stress that help prevent free radical damage. And So-Ochim-Tang-Gagam-bang decreased the intracellular content of serotonin and mRNA expression of 5-HTT and TPH-1. Therefore, further researches are suggested to reveal the anti-depressive effectiveness of So-Ochim-Tang-Gagam-bang.

Simulation of the Effect of Protein Quality at the Different Protein Intake Level on Protein Metabolism (각기 다른 단백질섭취 수준에서 본 식이단백질의 질이 단백질대사에 미치는 영향 -Simulation Model을 이용하여-)

  • 이옥희
    • Journal of Nutrition and Health
    • /
    • v.26 no.9
    • /
    • pp.1033-1048
    • /
    • 1993
  • This study was designed to describe the effect of the protein quality at different intake level of protein on the protein metabolism in the whole body of growing pigs with a simulation model. Varying to the protein level in feeds, four simulations were conducted. The feed protein level, represented as proportions of digestible protein to the metabolic energy (DP/ME, g/MJ), were 6-8, 11-13, 17-19, and 23-25 DP/ME, respectively. Two protein quality and six weeks of growth time were used at each simulation. The objective function for the simulations was protein deposition in the whole body, which was calculated from the experimental results. The parameters in the simulation were determined by the parameter estimation technique. The results obtained from the simulation were as follows: The protein synthesis and breakdown rates(g/day) in the whole body was increased with the increase of protein quality only at lower or required level of protein intake. They showed a parallel behavior in the course of growth, irrespective of quality and level of feed protein intake. The simulated protein deposition and protein synthesis showed a linear relationship between them at different protein quality and level. The affinity parameter showed a linear relationship between them at different protein quality and level. The affinity parameter showed that arginine, tryptophan and isoleucine were more efficient in the stimulation ofbody protein synthesis. Lysine and phenylalanine+tyrosine were less efficient. The oxidation parameter showed that histidine, pheyalanine+tyrosine were less efficient. The oxidation parameter showed that histidine, phenyalanine+tyrosine, and methionine+cystine were oxidized in larger magnitude than lysine and threonine. The oxidation parameter of most amino acids increased with the increase of protein intake beyond the requirement level, but not any more at highest protein intake level. Finally it was found that the improvement of feed protein quality at the lower or required level of protein intake increase protein deposition through a parallel increase of protein synthesis and breakdown.

  • PDF

LAB Fermentation Improves Production of Bioactive Compounds and Antioxidant Activity of Withania somnifera Extract and Its Metabolic Signatures as Revealed by LC-MS/MS

  • Yu, Jinhui;Geng, Yun;Xia, Han;Ma, Deyuan;Liu, Chao;Wu, Rina;Wu, Junrui;You, Shengbo;Bi, Yuping
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.4
    • /
    • pp.473-483
    • /
    • 2022
  • In this study we investigated the effect of lactic acid bacteria (LAB) fermentation on the ingredients and anti-oxidant activity of Withania somnifera extract. Four strains of LAB could proliferate normally in medium containing W. somnifera extract after the pH reached 3.1~3.5. LAB fermentation increased the content of alcohols and ketones, endowing the extract with the characteristic aroma of fermentation. Compared to the control, the DPPH and ABTS free radical scavenging rates in the fermented samples were significantly improved, ranging from 48.5% to 59.6% and 1.2% to 6.4%. The content of total phenols was significantly increased by 36.1% during the fermentation of mixed bacteria. Moreover, the original composition spectrum of the extract was significantly changed while the differentially accumulated metabolites (DAMs) were closely related to bile secretion, tryptophan metabolism and purine metabolism. Therefore, LAB fermentation can be used as a promising way to improve the flavor and bioactivity of the extracts of W. somnifera, making the ferments more attractive for use as functional food.

LC-MS/MS-based Quantification of Ten Neurotransmitters in Rat Limbic System and Serum: Application to Chronic Unpredictable Mild Stress-Induced Depression Rats

  • Mingyan Ma;Qiangxiang Chen;Wen Cao;Yubo Zhou;Aijuan Yan;Yanru Zhu
    • Mass Spectrometry Letters
    • /
    • v.14 no.3
    • /
    • pp.91-103
    • /
    • 2023
  • As one of the most common mood disorders, numerous studies have shown depression is the main risk factor for non-suicidal self-harm. The pathogenesis of depression is complex, and a comprehensive and rapid measurement of monoamine neurotransmitters and their metabolites will be very helpful in understanding the pathogenesis of depression. Therefore, a rapid and sensitive underivatized liquid chromatography-tandem mass spectrometry method was developed and validated for the simultaneous monitoring of the levels of ten neurotransmitters and their metabolites in rat serum and limbic system and successfully applied to quantify the changes of neurotransmitter levels in chronic unpredictable mild stress-induced rats. The analytes studied were mainly involved in tyrosine metabolism, tryptophan metabolism, and glutamate cycling pathways, which are important in the pathogenesis of depression. It had been verified the method was sensitive and effective, with satisfactory linearity, and met the requirements of biological sample determination. Levels of neurotransmitters in rat serum, hippocampus, amygdala, prefrontal cortex, striatum, and hypothalamus were determined via the method. The results showed serotonin, dopamine, norepinephrine, and their metabolites were decreased, glutamine was increased, and glutamate was disturbed in chronic unpredictable mild stress-induced depression rats. This method provides a new approach to studying the pathogenesis of depression and other neurological disorders.

The Effect of CV12, ST25, ST36 Acupuncture in General Diet and High Fat Diet Rat (고지방식이 및 일반식이 백서에 대한 중완·천추·족삼리 침자의 유효성 검증)

  • Kyeong-Soo Kim;Myeong-Hun Kim;Jae-Uk Sul;Eun-Ju Kim;Hong-Seok Son;Chang-Su Na
    • Korean Journal of Acupuncture
    • /
    • v.40 no.3
    • /
    • pp.109-127
    • /
    • 2023
  • Objectives : It was conducted to experimentally analyze the effects of acupuncture treatment at CV12, ST25, and ST36 on weight, FBCS, fat metabolism, microbiome, and metabolome changes in the general diet rat and the high-fat diet rat. Methods : It was classified into four groups: general diet & non-treatment group (ND), general diet & acupuncture treatment group (ND+AT), high-fat diet & non-treatment group (HFD), and high-fat diet & acupuncture treatment group (HFD-AT). After acupuncture treatment was performed on CV12, ST25, and ST36, changes in body weight, FBCS, fat metabolism, microbiome, and metabolome were analyzed. Results : Compared to the ND group, acupuncture treatment performed on CV12, ST25, and ST36 in the ND+AT group had no significant effect. Compared to the HFD group, CV12, ST25, and ST36 acupuncture in the HFD+AT group reduced weight, fat weight, inflammatory cytokine IL-6 expression, and lipid droplet accumulation in liver tissue. Acupuncture can promote fat metabolism and relieve inflammatory conditions. Differences in diversity between ND and HFD groups were clear in changes in microbiome, fecal metabolites, and serum metabolites. As a result of some microbiome and metabolites involved in fat decomposition, intestinal lipid absorption, and blood lipid concentration control, such as Intestinimonas, Ruminococcus 1, pyroglutamic acid, tryptophan, and inositol, it was observed that the acupuncture treatment effect was evident in the disease-induced imbalance. Conclusions : Acupuncture treatment performed on CV12, ST25, ST36 clearly observed various regulatory actions on obesity induced by high-fat diet, confirming that the action of acupuncture treatment mainly plays a role in controlling an unbalanced state.

Classification and Expression Profiling of Putative R2R3 MYB Genes in Rice

  • Kim, Bong-Gyu;Ko, Jae-Hyung;Min, Shin-Young;Ahn, Joong-Hoon
    • Journal of Applied Biological Chemistry
    • /
    • v.48 no.3
    • /
    • pp.127-132
    • /
    • 2005
  • MYB genes, comprising group of related genes found in animal, plant, and fungal genomes, encode common DNA-binding domains composed of one to four repeat motifs. MYB genes containing two repeats (R2R3) constitute largest MYB gene family in plants. R2R3 MYB genes play important roles in regulation of secondary metabolism, control of cell shape, disease resistance, and hormone response. Eight-four R2R3 MYB genes were retrieved from rice genome for functional characterization of MYB genes. Analysis of MYB domains revealed each MYB domain contains three ${\alpha}$-helices with regularly spaced tryptophan residues. R2R3 MYB genes were divided into four subfamilies based on phylogenic analysis result. Real-time PCR analysis of 34 MYB genes revealed 12 MYB genes were highly expressed in seeds than in leaves, whereas 4 genes were highly expressed in leaves.

Quality Changes of Sterilized Soybean Paste during Its Storage (살균 된장의 저장과정 중 품질변화)

  • 오만진;김종생;최성현;이상덕;이규희
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.28 no.5
    • /
    • pp.1069-1075
    • /
    • 1999
  • The sterilization was attempted to improve the quality deterioration of soybean paste during its storage. For this experiment, soybean paste was sterilized at 80oC for 30 minutes and stored during 6 months at 15oC and 30oC, respectively. The total approximate composition contents were moisture 52.5%, crude protein 11.94%, crude fat 2.0%, amino nitrogen 413.3mg%, sodium chloride 11.61% and ash 15.5%. According to the increase of storage period, pH was decreased gradually because of the increase of organic acids by the metabolism of microorganisms and the acid accumulation by acid forming bacteria, but titratable acidity was increased during storage. Amino nitrogen was rapidly increased for the first one or two month storage period and maintained as the same level for the rest of them. Each amino acid contents of soybean paste, which were glutamic acid, tryptophan, proline, arginine, and aspartic acid, had much higher level than others. In color changes sterilized soybean paste(SSP) was much lower than that of raw ones(RSP). Hunter L and b values on the surface of soybean paste were decreased during storage, and the decreasing levels were higher at 30oC than at 15oC. Hunter a value, however, was increased a little in the initial storage, and thereafter it was decreased. Lactic acid bacteria, yeasts, and molds were disappeared completely by the sterilization. However, the bacteria of aerobes and anaerobes were not disappeared by this processing.

  • PDF

Comparison of Surface and Core Peptide Fraction from Apo B-100 of Human LDL (Low Density Lipoprotein)

  • Cho, Hyun-Mi;Shin, Seung-Uon;Kim, Tae-Woong
    • Preventive Nutrition and Food Science
    • /
    • v.4 no.2
    • /
    • pp.145-151
    • /
    • 1999
  • Apolipoprotein B-100 (apo B-100) is an important component in plasma low density lipoproteins (LDL). It function as the ligand for the LDL receptor in peripheral cells. The LDLs are removed from the circulation by both high-affinity receptor-mediated and receptor-independant pathways. LDLs are heterogeneous in their lipid content, size and density and certain LDL subspecies increase risk of atherosclerosis due to differences in the conformation of apo B in the particle. In the present study , surface and core peptide fraction of Apo B-100 have been characterized by comparing peptide-mapping and fluorescence spectroscopy. Surface fragments of apo B-100 were generated by digestion of LDL with either trypsin , pronase, or pancreatin elastase. Surface fractions were fractionated on a Sephadex G-50 column. The remaining core fragments were delipidated and redigested with the above enzymes, and the resulting core peptides were compared with surface peptides. Results from peptide-mapping by HPLC showed pronase-digestion was more extensive than trypsin -digestion to remove surface peptide fraction from LDL. Fluorescence spectra showed that core fractions contained higher amount of tryptophan than surface fractions, and it indicated that core fraction wa smore hydrophobic than surface fractions. A comparison of the behavior of the core and surface provided informations about the regions of apo B-100 involved in LDL metabolism and also about the structural features concerning the formation of atherosclerosis.

  • PDF

Genetic Background Behind the Amino Acid Profiles of Fermented Soybeans Produced by Four Bacillus spp.

  • Jang, Mihyun;Jeong, Do-Won;Heo, Ganghun;Kong, Haram;Kim, Cheong-Tae;Lee, Jong-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.3
    • /
    • pp.447-455
    • /
    • 2021
  • Strains of four Bacillus spp. were respectively inoculated into sterilized soybeans and the free amino acid profiles of the resulting cultures were analyzed to discern their metabolic traits. After 30 days of culture, B. licheniformis showed the highest production of serine, threonine, and glutamic acid; B. subtilis exhibited the highest production of alanine, asparagine, glycine, leucine, proline, tryptophan, and lysine. B. velezensis increased the γ-aminobutyric acid (GABA) concentration to >200% of that in the control samples. B. sonorensis produced a somewhat similar amino acid profile with B. licheniformis. Comparative genomic analysis of the four Bacillus strains and the genetic profiles of the produced free amino acids revealed that genes involved in glutamate and arginine metabolism were not common to the four strains. The genes gadA/B (encoding a glutamate decarboxylase), rocE (amino acid permease), and puuD (γ-glutamyl-γ-aminobutyrate hydrolase) determined GABA production, and their presence was species-specific. Taken together, B. licheniformis and B. velezensis were respectively shown to have high potential to increase concentrations of glutamic acid and GABA, while B. subtilis has the ability to increase essential amino acid concentrations in fermented soybean foods.