• Title/Summary/Keyword: trypsin.

Search Result 832, Processing Time 0.027 seconds

Novel Preparation and Characterization of the α4-loop-α5 Membrane-perturbing Peptide from the Bacillus thuringiensis Cry4Ba δ-endotoxin

  • Leetachewa, Somphob;Katzenmeier, Gerd;Angsuthanasombat, Chanan
    • BMB Reports
    • /
    • v.39 no.3
    • /
    • pp.270-277
    • /
    • 2006
  • Helices 4 and 5 of the Bacillus thuringiensis Cry4Ba $\delta$-endotoxin have been shown to be important determinants for mosquito-larvicidal activity, likely being involved in membrane-pore formation. In this study, the Cry4Ba mutant protein containing an additional engineered tryptic cleavage site was used to produce the $\alpha4$-$\alpha5$ hairpin peptide by an efficient alternative strategy. Upon solubilization of toxin inclusions expressed in Escherichia coli and subsequent digestion with trypsin, the 130-kDa mutant protoxin was processed to protease-resistant fragments of ca. 47, 10 and 7 kDa. The 7-kDa fragment was identified as the $\alpha4$-loop-$\alpha5$ hairpin via N-terminal sequencing and mass spectrometry, and was successfully purified by size-exclusion FPLC and reversed-phase HPLC. Using circular dichroism spectroscopy, the 7-kDa peptide was found to exist predominantly as an $\alpha$-helical structure. Membrane perturbation studies by using fluorimetric calcein-release assays revealed that the 7-kDa helical hairpin is highly active against unilamellar liposomes compared with the 65-kDa activated full-length toxin. These results directly support the role of the $\alpha4$-loop-$\alpha5$ hairpin in membrane perturbation and pore formation of the full-length Cry4Ba toxin.

Cloning and Characterization of cDNA Encoding Potentially Functional Mouse Glandular Kallikrein

  • Kim, Hwa-Seon;Kim, Won-Sin
    • BMB Reports
    • /
    • v.30 no.5
    • /
    • pp.356-361
    • /
    • 1997
  • We cloned a cDNA (pPRC-1) which was comprised of 841 nucleotides from the cDNA library of a male ICR mouse submandibular gland ($SMG^+$). The nucleotide sequences of pPRC-1 were identical to those of exons 2 and 3 of the mGK-21 gene, a potentially functional glandular kallikrein identified in a Balb/c mouse, except for one nucleotide residue. Although this substitution changes Ile (ATT) in pPRC-1 to Val (GTT) in mGK-21, this difference has been explained by strain polymorphism. From the amino acid sequences predicted from its cDNA, we speculated that mGK-21 gene products/pGK21 consist of 261 amino acids including the $NH_2$-terminal signal peptide (residues 1~17), the short propeptide (residues 17~24), and the active peptide (residues 25~261). Although we did not demonstrate the enzyme activity of pGK21, it was assumed that pGK 21 was involved in the maturation of certain bioactive polypeptide(s) in mouse SMG for the following reasons : (a) mGK-21 gene was apparently expressed in a male ICR mouse SMG: (b) the proposed active site $His^{65}$, $Asp^{120}$, and $Ser^{213}$ residues were completely conserved in pGK21 just like other glandular kallikreins; (c) the cloned cDNA was translated to a predicted 27 kDa polypeptide chain in vitro: (d) the 27 kDa polypeptide chain produced by CHO cells was produced to a putative active form by trypsin.

  • PDF

Studies on Mild Mutants of Tobacco Mosaic Virus II. Biochemical Properties of Ribonucleic Acid and Coat Protein (약독 담배모자이크바이러스 II. RNA 및 외피단백질의 특성)

  • Choi Jang Kyung;Park Won Mok
    • Korean Journal Plant Pathology
    • /
    • v.2 no.2
    • /
    • pp.121-128
    • /
    • 1986
  • The biochemical properties of ribonucleic acid (RNA) and coat protein of the mild tobacco mosaic virus (TMV) mutant, Tw 333 are described. The molecular weight of the RNA calculated from polyacrylamide gel electrophoresis was $2.03\times10^6$ daltons. The molar ratio of the bases of the RNA was 25.4 guanine, 29.2 adenine, 17.5 cytosine and 27.9 uracil in moles. The hyperchromicity on Tw 333-RNA by thermal denaturation was $25.1\%$, indicating Tm value of $47^{\circ}C$. The virus coat protein migrated as a single component in SDS-polyacrylamide gel electrophoresis and had a molecular weight of 17,500 daltons. A total of 158 amino acid residues are present in the protein. Separation of the tryptic peptides by electrophoresis and chromatography yielded ninhydrin-positive compounds. The biochemical properties of RNA and coat protein of the mild mutant we very similar to those of wild type of TMV-OM strain, but some difference between the strains were observe in the base composition, hyperchromicity, amino acid composition and tryptic peptide map.

  • PDF

Biochemical Characterization of Serine Proteases with Fibrinolytic Activity from Tenodera sinensis (Praying Mantis)

  • Kim, Yeong-Shik;Hahn, Bum-Soo;Cho, So-Yean;Chang, Il-Moo
    • Toxicological Research
    • /
    • v.17
    • /
    • pp.97-104
    • /
    • 2001
  • Three types of proteases (MEF-1, MEF-2 and MEF-3) were purified from the egg cases of Ten-odera sinensis using ammonium sulfate fractionation, gel filtration on Bio-Gel P-60 and affinity chromatography on DEAE Affi-Gel blue gel. The proteases were assessed homogeneous by SDS-polyacrylamide gel electrophoresis and have molecular weight of 31,500, 32,900 and 35,600 Da, respectively. The N-terminal regions of the primary structure were compared and they were found to be different each other. MEFs readily digested the $A\alpha$ - and B$\beta$-chains of fibrinogen and more slowly the ${\gamma}$-chain. The action of the enzymes resulted in extensive hydrolysis of fibrinogen and fibrin, releasing a variety of fibrinopeptides. MEF-1 was inactivated by Cu$^{2+}$ and Zn$^{2+}$ and inhibited by PMSF and chymostatin. MEF-2 was inhibited by PMSF, TLCK. soybean trypsin inhibitor. MEF-3 was only inhibited by PMSF and chymostatin. Antiplasmin was not sensitive to MEF-1 but antithrombin III inhibited the enzymatic activity qf MEF-1. MEF-2 specifically bound to anti plasmin Among the chromogenic protease substrates, the most sensitive one to the hydrolysis of MEFs was benzoyl-Phe-Val-Arg-p-nitroanilide with maximal activity at pH 7.0 and 3$0^{\circ}C$. MEF-1 preferentially cleaved the oxidized B-chain of insulin between Leu15 and Tyr16. In contrast, MEF-2 specifically cleaved the peptide bond between Arg23 and Gly24. D-dimer concentrations increased on incubation of cross-linked fibrin with MEF-1, indicating the enzyme has a strong fibrinolytic activity.ity.

  • PDF

Application of Human Dermal Fibroblast and Keratinocyte on Allogenic Dermis(AlloDerm®) (동종진피에 사람진피 섬유모세포와 각질세포를 적용한 인공피부의 실험적 제작)

  • Oh, Jung Chul;Lim, Yeung Kook;Jeong, Jae Ho
    • Archives of Plastic Surgery
    • /
    • v.33 no.5
    • /
    • pp.601-605
    • /
    • 2006
  • Purpose: Large skin defect by various causes, should be covered by autologous skin graft. But, the donor site of autologous skin graft is limited and leaves permanent donor scar and contracture. There have been our trial to engineer artificial skin using allogenic dermis (AlloDerm) with basement membrane. Methods: Dermal and epidermal layer were separated by immersing in dipase solution for 30 minutes, and the separated layers were treated with 0.05% trypsin for 10 minutes. And then each layer was cultivated to fibroblasts and keratinocytes on a culture medium. Fibroblasts were first penetrated into basement membrane of allogenic dermis facing down, then allogenic dermis was flipped over to face up and keratinocytes were transplanted to allogenic dermis. Results: Observing artificial skin fabricated in vitro, we found following: 1) The artificial skin opened in air for 5 days formed epidermal layer. In dermal layer, fibroblast was distributed evenly among all. 2) The artificial skin opened in air for 30 days formed thicker and thicker, and it formed basement membrane, spinous and granular layers. PAS stain to confirm existence of basement membrane showed positive reaction. 3) Cytokeratin 10 stain to confirm the formation of epidermal layer showed positive reaction. 4) The formation of thick keratin, lamellar body and desmosome similar to human skin were observed in result of an electron micrograph. Conclusion: As a result of research, the structure seen in normal skin such as rete ridge, is found in reproduced artificial skin. This type of artificial skin can be used as a useful model for investigating skin disease and for clinical application also.

Recombinant Glargine Insulin Production Process Using Escherichia coli

  • Hwang, Hae-Gwang;Kim, Kwang-Jin;Lee, Se-Hoon;Kim, Chang-Kyu;Min, Cheol-Ki;Yun, Jung-Mi;Lee, Su Ui;Son, Young-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.10
    • /
    • pp.1781-1789
    • /
    • 2016
  • Glargine insulin is a long-acting insulin analog that helps blood glucose maintenance in patients with diabetes. We constructed the pPT-GI vector to express prepeptide glargine insulin when transformed into Escherichia coli JM109. The transformed E. coli cells were cultured by fed-batch fermentation. The final dry cell mass was 18 g/l. The prepeptide glargine insulin was 38.52% of the total protein. It was expressed as an inclusion body and then refolded to recover the biological activity. To convert the prepeptide into glargine insulin, citraconylation and trypsin cleavage were performed. Using citraconylation, the yield of enzymatic conversion for glargine insulin increased by 3.2-fold compared with that without citraconylation. After the enzyme reaction, active glargine insulin was purified by two types of chromatography (ion-exchange chromatography and reverse-phase chromatography). We obtained recombinant human glargine insulin at 98.11% purity and verified that it is equal to the standard of human glargine insulin, based on High-performance liquid chromatography analysis and Matrix-assisted laser desorption/ionization Time-of-Flight Mass Spectrometry. We thus established a production process for high-purity recombinant human glargine insulin and a method to block Arg (B31)-insulin formation. This established process for recombinant human glargine insulin may be a model process for the production of other human insulin analogs.

Functional Analyses of Centrosomal Proteins, Nek2 and NuMA in Development of Mouse Gametes and Early Embryos

  • Youn, Hong-Hee;Oh, Hwa-Soon;Lee, Kwang-Hee;Son, Chae-Ick;Lee, Sang-Ho
    • Proceedings of the KSAR Conference
    • /
    • 2003.06a
    • /
    • pp.96-96
    • /
    • 2003
  • Nek2 (NIMA-related protein) is a mammalian cell cycle-regulated kinase that involves in chromosome condensation and centrosome regulation and NuMA (nuclear mitotic apparatus protein) is involved in spindle assembly during a cell cycle. The cellular distribution and organization of the centrosomal components is completely unknown during fertilization and embryonic development. We examined distribution of two well-known centrosomal proteins, Nek2 and NuMA in mouse gametes and embryos to get an insight in the reorganization of centrosomal proteins during germ cell development and early fertilization. Spermatogenic cells, gametes, and embryos were analyzed with anti-Nek2 or -NuMA antibodies by immunological assay, RT-PCR, and overexpression through gene transfection. Mitotically or meiotically active spermatogenic cells were intensively stained with these antibodies in both centrosomes and cytoplasm, whereas the oocytes showed different staining patterns depending on the meiotic stages. During maturation, GV, GVBD, and MI stage were clearly stained with NuMA antibody in the nucleus or cytoplasm at MII. Also, Nek2 was detectable in cytoplasm as scattered spots or chromosome associated at MII. In early developmental embryo, NuMA was detected in nucleus of each blastomere, while Nek2 was detected in cytoplasm. In contrast to previously reported results, Nek2 and NuMA were detected in both decondensing head, and the centriole of demembranated and decondensed sperm or whole body of trypsin-treated sperm for Nek2. During meiotic progress in oocytes, transcripts levels were the highest in MI stage and then downregulated in MII. Also, it shows dramatically change in early developmental embryos, firstly, it was increased until 4 cell stage and reduced in 8 cell stage, and finally, transcript levels were upregulated until blastoscyst. This finding suggests that cnetrosomal component may play an important role in reorganizing of functional centrosome during fertilization process and subsequent development.

  • PDF

The Effects of Surfactants Including Ginseng Saponins on the Gastric Enzyme-Catalyzed Hydrolysis (인삼(人蔘) 사포닌을 비롯한 계면활성제(界面活性劑)가 위장관내(胃腸管內)의 단백질(蛋白質) 가수분해효소(加水分解酵素) 반응(反應)에 미치는 영향(影響))

  • Kim Young-Jae;Lee Sang-Jik;Park Ki-Tae
    • The Journal of Korean Medicine
    • /
    • v.27 no.2 s.66
    • /
    • pp.103-110
    • /
    • 2006
  • Objectives : This study was conducted to investigate the effects of ginseng saponins and commercial surfactants such as Triton X-100, sodium deoxycholate, and sodium dodecyl sulfate on the gastric enzyme-catalyzed hydrolysis. Methods : Saponins (a surface-active plant component) from fresh ginseng root were extracted to examine its effect on the gastric enzyme-catalyzed hydrolysis. Commercial surfactants such as Triton X-100, sodium deoxycholate, and sodium dodecyl sulfate were also employed in the hydrolysis system to compare their effects with that of the ginseng saponins. The effects of surfactants on the gastric enzyme-catalyzed hydrolysis were measured by using a spectrophotometer. A spectropolarimeter was used to examine the conformational change of enzymes and substrates by the addition of ginseng saponins into the system. Results : Both the tryptic and the peptic digestion of milk casein or eggalbumin were slightly improved with an increase in the amount of ginseng saponins in the system. Triton X-100 showed an effect similar to that of ginseng saponins, while sodium dodecyl sulfate and sodium deoxycholate diminished the hydrolysis. Circular dichroism spectra of enzymes and substrates was significantly changed by the addition of ginseng saponins into the system. Conclusions : These results show that ginseng saponins affect positively the gastric enzyme-catalyzed hydrolysis, and suggest that the digestion of substrates by gastric enzymes is affected by the change of enzyme conformation by ginseng saponins.

  • PDF

Molecular Clonging and Hyperexpression of a Bt Gene, cryIAc, in Escherichia coli $DH5{\alpha}$: Production and Usage of Anti-CryIAc Antibody

  • RYOU, CHONGSUK;TAEYOUNG CHUNG;MOOSIK KWON
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.6
    • /
    • pp.1093-1098
    • /
    • 2001
  • The gene coding for a Lepidoptera-specific insecticidal crystalline (or control) protein (ICP), recognized as cryIAc, from Bacillus thuringiensis subsp. kurstaki HD-73, was cloned into the vector pBluscript ll SK-, and then transformed in Escherichia coli $DH5{\alpha}$. The clone was named EBtIAc and the chimeric phagemid, as pEBtIAc. Hyperexpression of CryIAc protoxin was observed in the extract of the culture of E. coli harboring pEBtIAc. Crystalline protoxin was purified by differential solubility. It was dissolved in alkaline pH, and exposed to trypsin to be activated. The molecular weights of the pro- and activated toxins on SDS-PAGE were estimated to be ca. 130 kDa and 60 kDa, respectively. The toxicity was tested by force-feeding larvae of gypsi moth (Lymantria diapar) with trypsinized protoxin. Using the batch of biologically active form of the toxin as an immunogen, anti-CryIAc antiserum was raised in a New Zealand white rabbit. Immunoglobulin G was fractionated from the seam by Protein-A sepharose affinity chromatography. Immunoreactivity of the antibody was examined by dot and Westerns blottings. It has been found that the anti- CryIAc antibody recognized the purified toxin at a level below a nanogram in terms of quantity. Using the antibody some of Bt-corns were able to be differentiated from tons of corn kernels which were imported from America as forage crops.

  • PDF

Heterologous Production of Streptokinase in Secretory Form in Streptomyces lividans and in Nonsecretory Form in Escherichia coli

  • Kim,, Mi-Ran;Choeng, Yong-Hoon;Chi, Won-Jae;Kang, Dae-Kyung;Hong, Soon-Kwang
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.1
    • /
    • pp.132-137
    • /
    • 2010
  • The skc gene encoding streptokinase (SK) with a molecular mass of approximately 47.4 kDa was cloned from Streptococcus equisimilis ATCC 9542 and heterologously overexpressed in Streptomyces lividans TK24 and E. coli using various strong promoters. When the promoter for sprT [Streptomyces griseus trypsin (SGT)] was used in the host S. lividans TK24, a 47.4-kDa protein was detected along with a smaller hydrolyzed protein (44 kDa), suggesting that posttranslational hydrolysis had occurred as has been reported in other expression systems. The casein/plasminogen plate assay revealed that the plasmid construct containing the SGT signal peptide was superior to that containing the SK signal peptide in terms of SK production. Maximal production of SK was calculated to be about 0.25 unit/ml of culture broth, a value that was five times higher than that obtained with other expression systems using ermE and tipA promoters in the same host. When the skc gene was expressed in E. coli BL21(${\Delta}DE3$)pLys under the control of the T7 promoter, a relatively large amount of SK was expressed in soluble form without hydrolysis. SK activity in E. coli/pET28a-$T7_pSK_m$ was more than 2 units/ml of culture broth, even though about half of the expressed protein formed an inactive inclusion body.